
Efficiently computing Bernoulli numbers using FLINT
David J. A. Howden - URSS Project, Summer 2007. Supervisor: Dr William Hart

Introduction

Named after the Swiss mathematician Jackob Bernoulli (1654-1705), the
Bernoulli numbers Bn are a sequence of signed rational numbers that can be
identified by the following identity

x
ex−1 ≡

!

"
n=0

Bnxn

n!
.

In simpler terms, they come from the coefficients of the Taylor expansion of
x/(ex−1), and as such can be calculated recursively by setting B0 = 1, and then
using the relation

(
k+1
1

)
Bk+

(
k+1
2

)
Bk−1+ . . .+

(
k+1
k

)
B1+B0 = 0.

Bernoulli numbers are seen as central to many ideas and structures in algebraic
number theory. For instance, Euler used them to express the sums of equal pow-
ers of consecutive integers. Bernoulli numbers even featured in early attempts
to solve Fermat’s Last Theorem.
Using machines to generate Bernoulli numbers is an old problem dating back
to 1842 when Ada Byron constructed an algorithm which would allow Charles
Babbage’s ‘Analytical Engine’ to compute them. This makes the Bernoulli
numbers the subject of one of the first computer programs ever conceived. This
problem continues today, where there are numerous efforts by different groups
of mathematicians to compute Bernoulli numbers to increasing limits.
Here we will concentrate on computing Bernoulli numbers modulo a prime
number p.

Theory - Reducing to Polynomial Multiplication

In order to compute the Bernoulli numbers modulo a prime number p, we will
followed a method outlined by David Harvey. The algorithm is split into two
parts. The first part involves expressing Bernoulli numbers in terms of dis-
tributions on Zp which is taken from Lang’s “Cyclotomic Fields” (chapter 2,
Theorem 2.3), and can be written as follows

Bk/k =
1

1−gk "
x∈Z/pZ

xk−1h(x) mod p

where g is a generator of (Z/pZ)∗, and where h is defined as

h(x) =
{
x
p

}
−g

{
g−1x
p

}
+
g−1
2

.

Here {·} denotes the fractional part. By substituting x = g j, using the fact that
h(g j)/g j has period (p− 1)/2 as a function of j, and since we are only inter-
ested in even k, we have

B2k =
4k

1−g2k
(p−3)/2

"
j=0

g2 jk
h(g j)
g j

mod p.

The sum on the right is a number-theoretic transform of length (p− 1)/2.
The second part of the algorithm involves evaluating this transform by using
Bluestein’s trick, which states that any transform of the form

bk =
(p−3)/2

"
j=0

g2 jka j

can be rewritten using the identity 2 jk = k2+ j2− (k− j)2 as

bk = gk
2
(p−3/2)

"
j=0

ck− jd j

where c j = g− j2 and d j = g j2a j. This last sum is a convolution, and so it tanta-
mount to computing the product of the polynomials

F(X) =
(p−3/2)

"
j=−(p−3)/2

c jX j and G(X) =
(p−3)/2

"
j=0

d jX j.

In fact one checks that c j+(p−1)/2 = (−1)(p−1)/2c j, so

F(X) = 1+
(
1+(−1)(p−1)/2X−(p−1)/2

) (p−3)/2

"
j=1

c jX j

and this observation reduces the problem to multiplying two polynomials of
length (p−1)/2.

Polynomials in FLINT
FLINT is an open source library coded in C which provides various number the-
ory algorithms and structures. In particular, FLINT implements multi-precision
integer polynomials and is currently faster than all other available libraries for
polynomial operations.
There are several separate FLINT modules, which allow for ordinary polyno-
mial multiplication tuned for different inputs.
• ‘Multi-precision Integer Polynomials’ or ‘mpz poly’. Polynomials with arbi-
trarily large coefficients, which are automatically resized if necessary.

• ‘Flat Multi-precision Integer Polynomials’ or ‘fmpz poly’. Polynomials with
arbitrarily large coefficients that are fixed in size. These polynomials are rec-
ommended when the the size of the output coefficients is known. Since there
is no coefficient resizing in any operations, this module provides performance
improvements over the ‘mpz poly’ polynomial module.

Since the two input polynomials are represented mod p, the size of each of
the coefficients in the polynomials is less than the size of p. Hence either the
‘mpz poly’ or ‘fmpz poly’ can be used to implement the Bernoulli algorithm.

However, we can improve on this. Since we only need the coefficients of the
resulting polynomial mod p, a new FLINT polynomial module, ‘zmod poly’,
which handles polynomials modulo a prime number should give some perfor-
mance increase by computing the modulo arithmetic within the multiplication
instead of after it.

Results
I implemented ‘mpz poly’, ‘fmpz poly’ and ‘zmod poly’ versions of the algo-
rithm described earlier along with the new FLINT module ‘zmod poly’, and
found that
•The ‘fmpz poly’ implementation is twice as fast as the ‘mpz poly’ implemen-
tation.

•The implementation using the new module which I have contributed,
‘zmod poly’, out performs the ‘fmpz poly’ implementation by 20% in gen-
eral.

The following graph demonstrates the performance difference between the
‘fmpz poly’ and ‘zmod poly’ implementations. The code has been profiled by
computing the Bernoulli numbers for the first 1000 prime numbers (beginning
with 3), each done 1000 times and totalling the time taken for each.

Conclusions and Future Directions
The ‘zmod poly’ implementation of the algorithm to find the Bernoulli numbers
mod p out performs the other FLINT polynomial module implementations, and
‘zmod poly’ should in most cases outperform ‘fmpz poly’ and ‘mpz poly’ for
polynomial arithmetic mod p.
The Bernoulli algorithm is limited by the size of the prime number p, which
must be less than than 18446744073709551615 on a 64-bit computer. The
FLINT module ‘zmod poly’ could be extended to included arbitrarily large
primes, and hence compute Bernoulli numbers for arbitrarily large p.


