
1. (a) We consider sequences consisting of opening and closing parentheses. A sequence
is well-formed, if it corresponds to a sequence of parentheses in some well-formed
arithmetic expression: for example, the sequences ‘(((())))’, ‘()(())()((()))’, ‘’
(empty sequence), are well-formed, while the sequences ‘)(’, ‘(()))’, ‘()(()’, are
not. Design an efficient BSP algorithm that, given an array of characters con-
taining a sequence of parentheses, determines whether it is well-formed. Describe
the main idea for any BSP algorithm used as a subroutine; you do not need to
describe any such algorithms in detail. [12]

Solution: Denote the sequence of parentheses by x[i], where 0 ≤ i < n.
Define an integer array y of size n as

y[i]←

{
1 x[i] = ‘(’,

−1 x[i] = ‘)’.

Let z be an array of prefix sums of y:

z[i]←
∑
0≤j≤i

y[j]

Intuitively, z[i] gives the nesting depth at position immediately following
parenthesis x[i]. Sequence x is well-formed, if and only if z[i] ≥ 0 for all i,
0 ≤ i < n, and z[n− 1] = 0.

The algorithm proceeds as follows. Each processor reads a contiguous block
of n/p elements of sequence x, and initialises a corresponding block of array
y. The processors then perform the BSP prefix sums algorithm on array y,
using the addition operator; as a result, each processor obtains a contiguous
block of the prefix sums array z. Finally, each processor checks the conditions
z[i] ≥ 0 for all i, 0 ≤ i < n, and z[n−1] = 0 on its local block of array z, and
notifies a designated processor if at least one of the conditions is violated.
The designated processor returns “false (not well-formed)” if it has received
such a notification from any of the processors, otherwise is returns “true
(well-formed)”.

(b) For the algorithm developed in part (b), give its asymptotic BSP cost, justifying
your answers, and stating all necessary assumptions. [5]

Solution: (Application) The input and output run in O(n/p) local compu-
tation and communication, and one superstep. The prefix sums subroutine
runs in O(n/p) local computation and communication, and O(1) supersteps.
The final checks run in O(n/p) local computation and O(p) communication.
Therefore, the whole algorithm has local computation cost O(n/p), commu-
nication cost O(n/p) and synchronisation cost O(1). For the prefix sums
subroutine, we need n/p ≥ p, hence n ≥ p2.


