
ES2A7 - Fluid Mechanics Example Classes 

Model Answers to Example Questions (Set I) 
 
 
 
 
Question 1: Wind Tunnel 
 
A simple wind-tunnel is depicted schematically in Figure 1. The flow speed in the 
working section is assumed to be constant with a value of VB = 60m/s at point B. The 
cross-sectional area of the working section is 1 m2.  

 
Figure 1: Sketch of simple wind-tunnel 

 
i)  Neglecting irreversible losses, such as those due to viscous effects, calculate the 

gauge pressure in the working section. (Assume a value of ρ = 12.  kg/m3 for the 
density of air). 

ii)  Calculate the mass flow rate across the cross-section in the working section. 
 

i) Consider a typical streamline AB. Point B is in the working section and point A is 
located in surroundings where the pressure equals atmospheric pressure pA  and the flow 
speed is zero. According to the Bernoulli equation one then gets 
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This means that the pressure in the working section is 2160 Pa below the atmospheric 
pressure. (N.B.: The modulo of this pressure difference corresponds approximately to the 
pressure resulting from a 21 cm high water column.) 

ii) The mass flow rate Q across the cross-section in the working section is given by: 
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Question 2: Plunger 
A plunger is moving through a cylinder as schematically illustrated in the Figure 2. The 
velocity of the plunger is Vp = 10 ms-1. The oil film separating the plunger from the 
cylinder has a dynamic viscosity of µ=0.3 N.s.m-2. Assume that the oil-film thickness is 
uniform over the entire peripheral surface of the plunger. Calculate the force and the 
power required to maintain this motion. 

 
Figure 2:  Plunger moving through cylinder. 

 
The oil film is sufficiently thin such that we can assume a linear velocity profile for the 
flow of oil in the film. One can calculate the frictional resistance by computing the shear 
stress at the plunger surface by means of Newton’s law of viscosity. 
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The frictional force can now be calculated by multiplying the shear stress with the 
surface of the plunger. 
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The power P  required to drive the piston is 
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m
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Question 3: Flow over Wing 



 
Assume that a plane is flying with a constant velocity of 550 =v ms-1 at standard sea 

level conditions (Density air: 23.10=ρ  kg m-3, Pressure: 5
0 1001.1 ×=p Nm-2). At some 

point on one of the plane’s wings the pressure is measured as p = ×0 95 105. Nm-2. 
Calculate the flow velocity v  at this point. 
 
The question can be solved by relating the flow conditions far upstream of the wing to 
the flow conditions at the point on the wing considered by the Bernoulli equation. Note 
that we implicitly assume that wing is stationary and air is blowing at wing with velocity 

0v  Bernoulli gives: 
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Solving for v  gives 
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Question 4: Sphere in Fluid 
 
A sphere moves through oil. The constant velocity of the sphere is 1=u mms-1. The 
dynamic viscosity of the oil is 05.0=µ  Nsm-2 and its density is 900=oρ kgm-3. The 

radius of the sphere is 10=r mm and its density is 1200=sρ kgm-3. (i) Use Figure 3 to 

estimate the drag forces acting on the sphere. (ii) Calculate the buoyancy force acting on 
the sphere. 
 
(i) We need to calculate the Reynolds number associated with the motion in order to use 
the graphs in Figure 3.  
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For 36.0Re=  the graph gives 7060 << DC . The definition of the drag coefficient is 
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Thus, with the limits for DC  obtained from the graph 
 

                                 6104823.8 −× N  << ForceDrag 610896.9 −× N 

Note: Exact Drag Coefficient is 67.66
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to 10N the result for drag force is ‘equivalent’ to ‘weight’ of 7104823.8 −× kg  

<< ''Weight 710896.9 −× kg    or     4104823.8 −×  g  << ''Weight 410896.9 −× g 
 
(ii) The buoyancy force BF  is given by 

             BF  = ×g Volume of fluid displaced ×Density of fluid displaced 
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Figure 3: Drag coefficient of smooth, axially symmetric bodies (From: Massey, 

Mechanics of Fluids, Chapman & Hall, 1989, 6th Edition) 
 
 



Question 5: Fire Engine 
 
A fire engine pump develops a head of 50 m, i.e. it increases the energy per unit 
weight of the water passing through it by 50 N m N-1. The pump draws water from a 
sump at A (Fig. 4) through a 150 mm diameter pipe in which there is a loss of energy 
per unit weight due to friction h1 = 5u1

2/2g varying with the mean velocity u1 in the 
pipe, and discharges it through a 75 mm nozzle at C, 30 m above the pump, at the end 
of a 100 mm diameter delivery pipe in which there is a loss of energy per unit weight 
h2 = 12u2

2/2g. Calculate (a) the velocity of the jet issuing from the nozzle at C and (b) 
the pressure in the suction pipe at the inlet to the pump at B. 

 
Figure 4: Fire engine Pump 

 
(Note: Question taken from Douglas,Gasiorek & Swaffield, Fluid Mechanics, Prentice 
Hall, 4' edition, 2001, see pages 170-173) 
 
(a) We can apply Bernoulli's equation between two points, one of which will be C, 
since we wish to determine the jet velocity u3 and the other a point at which the 
conditions are known, such as a point A on the free surface of the sump where the 
pressure will be atmospheric, so that pA = 0, the velocity u1 will be zero if the sump is 
large, and A can be taken as the datum level so that z1 = 0. Then, 
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With pc = Atmospheric pressure = 0 and z3 =30+2=32m. 
Therefore, 
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[ ] 2
1 1Loss in inlet pipe =h =5u /2g 

[ ]Energy per unit of weight supplied by pump =50m 

[ ] 2
2 2Loss in delivery pipe =h =12u /2g 

 
Substituting in (I), 
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0 = ( u /2g + 32) + 5 u /2g 50 + 12u /2g,

u +5u +12u = 2g 18.                                     (II)
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From the continuity of flow equation,  
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Substituting in equation (II), 
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(b) If PB is the pressure in the suction pipe at the pump inlet, applying Bernoulli's 
equation to A and B, 
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Question 6:  Multi-Fluid Manometer 
 
A multi-fluid manometer is set up as shown in Figure 5. The pressure at its right end is 

5
2 109.0 ×=p  Nm-2. The densities of the fluids are 1000=Aρ  kg m-3 , 900=Bρ  kg m-3  

13000=Cρ  kg m-3. One measures 5.01 =h  m 3.02 =h  m and 6.03 =h  m. Find the 

pressure 1p . 

 
Figure 5: Multi-fluid manometer 

 
 
 



 
 

Start at Point 0Q  at surface of fluid at left end where pressure is 1p .  Then move 

along the tube and add or subtract appropriate hg −−ρ -terms until reaching Point 

6Q  and setting the result equal to pressure 2p . 

• From 0Q  →  1Q  : Point 1Q  lies by height 1h  lower than 0Q . Hence pressure 

here is 11,0 hgp Aρ=∆  higher than pressure in 0Q  (where pressure is 1p ). 

• From 1Q  →  2Q  : Both points at same height hence 02,1 =∆p . 

• From 2Q  →  3Q  : Both points at same height hence 03,2 =∆p . 

• From 3Q →  4Q  : Point 4Q  lies by height 2h  below Point 3Q . Hence pressure 

increases by 24,3 hgp Bρ=∆  with respect to pressure in 3Q . 

• From 4Q →  5Q  : Both points at same height hence 05,4 =∆p . 

• From 5Q →  6Q  : Point 6Q  lies by height 3h  above Point 5Q . Hence pressure 

decreases by 36,5 hgP Cρ−=∆  with respect to pressure in 5Q . 

• Now, at Point 6Q  is pressure is2p . 

 

 

     Summing up all terms gives and equating to pressure 2p  in Point 6Q  gives: 

                          +1p +∆ 1,0p +∆ 2,1p +∆ 3,2p +∆ 4,3p +∆ 5,4p 26,5 pp =∆  

     and, hence :       +1p 1hgAρ  0+ 0+ 2hgBρ+ 0+  3hgCρ−   2p=  

     Solving for 1p  yields :     
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