ES2A7 - Fluid M echanics Example Classes
Model Answersto Example Questions (Set 1)

(If you spot any typing errors etc in this documéntould be grateful if you would send me an email
concerning this such that | can update my filearihyou! My email address §t@eng.warwick.ac.uk)

Question 1: DIMENSIONAL ANALYSIS

Use dimensional analysis to determine the petiotbr small oscillations of a simple
pendulum (Fig. 1) of length . Assume that the period depends on the lengthef t
pendulum, the mass of the oscillating body and glevitational acceleration of the
Earth. (N.B.: You will find that the correct answr the question will imply that the
period must in fact be independent of the mashebscillating body.)
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Figure 1: Sketch of Pendulum Geometry

Quantities involved in the problem are:
QUANTITY UNITS DIMENSIONS
t: period of oscillation [s] T
| : length of pendulum [m] L
m: mass of oscillating body  [kg] M
: ravitational acceleration| m _ LT?
S
Assume:
t 017 on” "
thus
(M = (2 o\ i 2 O
7 |y A A B | 7

such that




LM [T =L IMP LV [T
and hence
LIMOIT = L™ IMP [T
compare exponents to obtain:
From ‘M ‘one gets : =0

From'T ‘ one gets -2y =1 and thusy = —

N | =

From'L’ one gets:0=a+y and thusa:—y:%

The final result is thus

1 1
t 012 m° [y 2

t=constD\/I
g

The (non-dimensional !) constant can in principle @etermined from one single
experiment or one can obtain it from some otheoritgcal considerations. It turns out
that it has a value afonst = 271 = 6.28

such that

N.B.: Dimensional analysis yields the result thiaé tperiod of oscillation must be
independent of the mass!

Question 2: Dynamic Similarity

The flow around an airship with a diametgr=3m and a lengtl = 20m needs to be
studied in a wind tunnel. The airspeed range tmbestigated is at the docking end of its
range, a maximum ot/ = 2ms®. Calculate the mean model wind tunnel speed if the

model is made to 1/10 scale. Assume the same @sspre and temperature for model
and prototype.

Dynamic similarity requires that the Reynolds numisiemodel and prototype need to|be
the same. This gives
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Resolving forv  yields




As the air pressure is assumed to be the sameré&otype conditions and model

conditions one thus gets
m
v = 2— X
S

3m m
x1x1=20—.
m S

Question 3: Manometer

In Fig. 2 the liquids at A and B are water and ti@nometer liquid is oil. Given are the
density of watep,, =1000 kgm*, the density of the ojh, =800 kgm*, hy =300mm,

h, =200mm, hy = 600mm, the gravitational acceleration of the Eaghs 981 ms?
Determine the pressure differenpg — pg in Pascals.

Figure 2: Differential Manometer

The system is in equilibrium. Hence it is requitledt
PA ~ AwIMN — Podhz = P ~ Py hg
= Pa - Pg = Pwdh + PodN — pudNg = g ( Lohy + Pt —1g) )
= 981ms 2 (800kgm‘3 02m+1000kgm >(0.3m - 0.6m) )
= 981ms ™2 ( 80ckgm™30.2m+1000kgm™3(03m - 06m) |

= 981ms ™2 (160<gm‘2 - 300kgm‘2) = —137% =-13734Pa
s™m

Question 4: Sliding Board



A board with an areeA=1mx 1m slides down an inclined ramp as is schematically

illustrated in Figure 3. The ramp is inclined atamglea =14°. The weight of the board
is W=40N and it slides with a constant velocitylf3.0 cm &. The board is separated
from the ramp by a thin film of oil with a dynamiéscosity of = 005 N s m. Assume
that edge effects are negligible. Assume furthat the distribution of the fluid velocity
across the oil-filled gap between the ramp andtheed is linear. Calculate the gap width
d between the board and the ramp. (Hint: The behdeés at a constant velocity when
the component of the weight parallel to the indimamp is equal to the resisting shear

force.)
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Figure 3: Board Sliding on Ramp

The mathematical interpretation of the hint given i

Ftangential = F§1ear . (1)

The component of the weight tangential to the rasrgiven by
F = Wsina.

tangential
The shear stresscan be calculated from Newton'’s law of viscosity
T=u v :
dy
As we are assuming a linear velocity distributiorthie oil film this gives

The shear forcd-,_, is then

AU U
F = TA = u—A = u=A.
shear /JAy /Jd

Substituting the expressions 6y, .., andF,_, inthe above expression (1) giv

Wsing = /,I%A

from which one finds

005" 003™ 1m?
m

g=HYA_ __ S -0000155m = 0.155mm
Wsina 40N sinl4’




Question 5: Discharge from Nozzle of a Reservoir

Use the Bernoulli equation and mass conservatidintba relation between the nozzle
discharge velocity Yand tank free-surface heightis shown in Figure 4.

Pressure at fluid surface
P, = atmospheric pressure

— Cross-sectional area of tank 4

[— Cross-sectional area of nozzle outlet A4,
\\ Discharge velocity ¥,
- Pressure at nozzle outlet P,

Figure 4: Discharge from Nozzle of a Reservoir

(Answer from: F.M. White, Fluid Mechanics®®dition, McGraw Hill, 1994, p. 161)
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Choose point 1 upstream and point 2 downstreamtd ghoose points 1 and 2 wher
maximum information is known or desired. Here wéeskepoint 1 as the tank freg
surface, where elevation and pressure are knowhpamt 2 as the nozzle exit, wher¢
again pressure and elevation are known. The twoowks are Y and \%.

Mass conservation is usually a vital part of Bedh@nalyses. If A is the tank cross
section and A the nozzle area, this is approximately a one-dsimral flow with
constant density:

U

AiV1i= AV, (1)

Bernoulli's equation gives :

oW PV

‘+21 49z, =2+-2+9z,

p 2 p 2
But since sections 1 arftlare both exposed to atmospheric pressure B
pressure terms cancel, leaving:

V; —V? =29(z,—z,) =2gh 2)
Eliminating V, between Eqgs. (1) and (2), we obthie desired result:

2 T A/A2




Generally the nozzle area #s very much smaller than the tank areasa that the
ratio Ao/A; is doubly negligible, and an accurate approximmafar the outlet velocity
is

V, ~2gh (4)

This formula, discovered by Evangelista Torricétli1l644, states that the dischargs
velocity equals the speed which a frictionless ipbrtwould attain if it fell freely
from point 1 to point 2. In other words, the potahenergy of the surface fluid is
entirely converted to kinetic energy of efflux, whiis consistent with the neglect of
friction and the fact that no net pressure wordase. Note that Eq. (4) is independen
of the fluid density, a characteristic of gravitgixen flows.

Except for the wall boundary layers, the streandifrem 1 to 2 all behave in the
same way, and we can assume that the Bernoullitaoiy, is the same for all the
core flow. However, the outlet flow is likely to ®nuniform, not one-dimensional,
so that the average velocity is only approximatetyal to Torricelli's result. The
engineer will then adjust the formula to include dimensionless discharge

coefficient G
<V2>av ~ C /2gh (5)

The discharge coefficient of a nozzle varies frdsowt 0.6 to 1.0 as a function of
(dimensionless) flow conditions and nozzle shape.

V2

@f l l /EGL

/ HGL
h=2-1
Vs
Open jet:
@ P2=Pa

[

Question 6: Transition of Pipe Flow

A Reynolds number for flow in a circular pipe isfided asRe =Vd/v (V: flow
velocity averaged across the cross section of the @: pipe diametery: kinematic
viscosity of the fluid flowing inside the pipe. Tlaecepted critical Reynolds number for
laminar-turbulent transition for the flow is Re&2300. For flow through a 60 mm-
diameter pipe, at what velocity will this occur f@) water withv =10° m”>.s* and (b)

air with a dynamic viscosity of/ = 182x10 kg mi* s* and a densitp=1.205 kg .



Vd vV Re

Re=— = V=2
Vv d
-5 2.1
)y 0x107°m’STI2300_ ) oo
006m S
-5 -1.-1 2
i) Asy=H 18200 KM S T g0
Y 1.205 kgm S
v = 151x 10°m?s™ 2300

= 05791
006m S

Question 7: Minimum Flight Speed of Plane

Calculate the minimum flight speed U of an aircifsfing at constant altitude. Consider
an aircraft with maximum take-off mass m= 30,740 &dift coefficient ¢=1.2 and a
total lifting surface of A=140 f Assume that the cruising altitude is 10 km whitee
density of air isp=0.0414 kg.ri? and the acceleration due to gravity is g=9.776°m.s
(Hint: For horizontal flight the lift force must lznce the gravitational force)

For horizontal flight the lift forceF must balance the gravitational forég which
means:

Since Fg =mg
And lift coefficient is :
CL:—]_ FL = FL:CL%pUZ A
2
~“pU“ A
2,0
1 2

One gets mg =C_ E'OU A

and after rearranging

m? _

SZ

U= [2mg _\/2><30,74G<g><9.776ms_2

= - 5 =\/864l4
CLPA \12x0.414kgm > x140m

9296
S




Question 8: Sprinter

Consider a sprinter running with velocity310 m.§" in still air (density:p=1.2 kg.n?)

as shown in Figure 5. Luckily the sprinter measutedatmospheric pressure before he
set off and phoned you up to tell you that it is@go R=101.3 kPa. What pressure will
the sprinter experience while running?

Select the sprinter as the control volume and piles@ coordinate system attached to
the sprinter as shown in the figure below. The [@mw@bis equivalent to having a
stationary sprinter air flows past him with theaaty Vo at atmospheric pressupg.

The Bernoulli equation applied between points (id &) along the selected streamlin
as shown in the figure gives

Py = PA+§V2

D

where at (1)P = Py and the velocity of Air is/, and at (2) the velocity of air is zerg
and the pressure is equal ®=FR,. This indicates that the sprinter experiences|a
pressure that increases with the square of thewglo

For the given conditions, the stagnation presswea ts

) [10m
P=1013kPa+ 129 xS

jZ
- =10136 kPa

Relative to the sprinter




