ES3C9
FLUID MECHANICSFOR MECHANICAL ENGINEERS
Answers: Example Sheet 3 - Pipe Flows

(1) Plane Poiseuille Flow: Consider the flow betwdwo infinitely wide plates, driven
by a pressure gradient, as shown in Fig. 1. ‘bthis width of the element of fluid
consider in the ‘z’ direction.
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(a) Use the suggested fluid element to show that thecitg profile for laminar flow
is given by :
1( dp 2
=— | -2 |(2Rv- 1.1
u(y) zﬂ( dxj( Ry-¥’) (1.2)

Force balance p2y'= 2rbdx+(p+dJp) 2y b

dp

Re-arrange 7 = (——
dx

jy' with y'=R-y
. : du

Newton law for the viscosity 7 = ,ud—
y

So '%:i(—@J(R—y)

dy  w\ dx
2
After integration (y):u =i(—@j(Ry—y—]+C
M\ dX 2
The boundary conditions give : u=0 at y=0 and &2Rj=
So C=0
1(_dp 2
Then u(y)=—| —F ||2Ry—
()= (2>~

Write down the maximum velocitydx in the pipe.

The maximum velocity occurs when du/dy change sigry=R

2
So umax :i(—@j
2u\  dx




(b) By first evaluating the volumetric flow rate in thauct, show that the mean
velocity is given by p= 2unad3. Compare the present results fgrand hax with
those found for Poiseuille flow in a pipe with aitar cross-section, ie. (from the

notes):
2 2
HY s
8u\ dx 4u\  dx
. 2R
Volumetric flow rate Q :J'O u(y)bdy
_b _dp 2R 2
—g( &jfo (2Ry-y?)dy

_b( o\ qe Y]
_2/,1( dxj[Ry 3}0

_2bR3(_ggj
3u dx

Mean velocity :Q= Rbu,,

And then using Max for question (1a) : kF 2Unax/ 3.

Is the difference reasonable ?

\ The effect of viscosity is greater in the circufape case yielding lower speeds

(c) Compute (i) the wall shear stress (Use y’east of y).

The wall shear follows from the definition of a Nmmian fluid :

I _ﬂ(au+avJ _ 0 Hap](mj(l y-zﬂ
w — fxywal — A AL “H 0 Aol A T2
ay' oOx JoiR ay'| \ ox J\ 2u R Joir
=+ WP oy 2
dx h

The wall shear has the same magnitude at eachlwalhy our sign convention, the upper
wall has negative shear stress.




(i) the stream function

Since the flow is plane, steady, and incompressldageam function exists:

'2
u:a_wzumax[l—y_J V:—a_LP:O
0x

Integrating and setting=0 at the centerline for convenience, we obtain

B y|3
Y=u -
max[y 3R2j

At the walls, y’= £ R andy= £2un.R/3 respectively.

(iii) the vorticity

In plane flow, there is only a single nonzero vaitti component:

ov_du _2u.. -,
Z,=(curlVv), :5_5_)/':_Rn;ax y

The vorticity is highest at the wall and is pos#tiicounterclockwise) in the upper half
and negative (clockwise) in the lower half of th@d. Viscous flows are typically full
of vorticity and are not at all irrotational.

(iv) the velocity potential

From part (iii), the vorticity is finite. Thereforae flow is not irrotational, and the

velocity potential does not exist.

(v) the average velocity

The average velocity is defined ag, V¥ Q/A, whereQ :ju dAover the cross section.
For our particular distribution u(y) from Eq. (1§e obtain :

2
Vavzlj.udA:i Rumax 1—y—2 bdy':—2umax
A 2Rb°-R R 3

In plane Poiseuille flow between parallel, platds average velocity is two-thirds
the maximum (or centerline) value. This result cbalso have been obtained from ti
stream function derived in part (ii). From Eq. (8)9

Qchannel = l'IJupper - l'IJI(:rwer = 2um3aXR _[_ zjgaXRj :%umaxR per unit width

whenceV,, =q/A_, =(4Ru,,, /3)/2R= A, /3, the same result.

This example illustrates a statement made eatirawledge of the velocity vector V
[as in Eq. 1] is essentially the solution to adlmechanics problem, since all other

flow properties can then be calculated.




(2) Laminar flow exists in the inclined pipe shown Fig. 2a. The flow is
“downhill” being driven by both the gravitationalofce and an applied
pressure gradient, dp/dx, along the length of thpep z is an upward
coordinate whilst x is a coordinate along the pepaterline.

(a) By considering the suggested fluid element in Ag, show that the velocity
profile is given by:

()= o - (o paa) (1)

Fig. 2a

Force balance in x-directionzr*p+mgsing =7 27 ox +( p+Jp) rr?

Or m, the mass of the element is= p7r >0

Also sinéd = —%(‘downhill’ => negative gradient)
X

And dp = %ax
X

After substitution in the force balance equation :

r[pg%+dpj ( i(pgz+ |O)jL
dx 2

dx dx
. .~ du_ du o , , .
Newton law for the viscosity 7 = ,ud— = _'UE (ris in the opposite direction to y)
y

du d
S0 dr ( dx('Og +p)] 2U

After integration and with the boundary conditiars0 at r=R :

u(r):i(—%(pgz+ p)j(RZ—rz) (1.2)

4u




(b) p=917kg/nt) feeds the flow in an inclined pipe as shown ig.F2b.
Given that h = 3.0 m,;z0.5m, % = 1.0m and R = 0.01m, find the maximum flow
velocity Unaxin the pipe.

[ANS. 2.71 m/s]

Fig. 2b

Pressure in A p, = Py, + 090

Pressure in B Pg = Puy, = Pa + 09% +?Xo
X

So the pressure gradient %—%) _ poh+pgz,
dx Xy
dp_dp°
dx dx
Then, knowing that the maximum of velocity is a&Orand using equation (1.2) :

Unaxe =U(0) =4—1ﬂ(%j R? =2.711 m/s

Also if p* = p+ pgz then

(c) Show that the volumetric flow rate through the piReis given by:

_mR( d
Q= 8u( dx(p+p92)j

Q:IORu(r)Zmar
Then using equation (1.29):21 _do J.RRZr —rdr
2u\  dx )70
_ (g R ]
2u\ dx 2 41,

7TR4
B 8#[

dx

-i( p+p92)j




Hence determine the mean velocity and confirm tteflow is, indeed, laminar
[ANS. 1.36 m/s]

Mean velocity :Q = 77R’u,,

2
Thus :u, = 7R (—i( p+pgz)j :lumax =1.356 m/s
8u \ dx 2

And then :Re, - PP 86« 200( so the flow is laminar.
U

(3) Kerosine (=0.00192Ns/rfy p=804kg/nf) flows in a horizontal pipe of diameter 2.0cm
and length 5.0m. The volumetric flow rate, Q is3a Titers/s
(a) Calculate the Reynolds number of the flow.

2
Mean velocity : agQ = ”D4um , Sou, =2.4 m/s

pu..D

Reynolds number Re, = = 2000( the flow is turbulent

(b) Using the index laws for velocity profile, calcidathe flow speed at the pipe
centerline.

From table in notes, choose n=6.6 for this Reynoldsber.

= Mum =2.97 m/s

u
max 2n?

(c) Use the Blasius equation to calculate the coefiicad friction and hence the shear

stress at the wall for this flow.

The Blasius equation is applicable at this Reynaldsber:

C, =tw =0.0895_ 4 55 107

So:r,=15.38 P¢

(d) Calculate the pressure head loss for the 5 m lesfgtipe.

To find the pressure loss, first find the presgireglient:r = (—?J%
X

Also atthewallr =D/2 : 7 =71

w

So : [—@j =% ~3076 Pa/n
dx D

This is the pressure loss per unit Iengtl‘(irecci—p] = —%
X
Pressure loss for LAp =L x3076= 15380 P
Equivalent head lossAp = pgAh thenAh=Ap/0g =1.95 m




(e) Calculate the (output) power of a pump neededrit@ dhis flow.
[ANS. (a) 20,000, (b) 2.97m/s, (c) 3.322510d) 1.95m, (e) 11.6W]

P=QAp=11.6 W sinceP:ngAh:r‘ngAh:%(mgAh)

(4) For the same flow as described in Questionu$?,the logarithmic law to calculate the
coefficient of friction.

Logarithmic law for @ i:5.7Iog( Re/C, )+ 0.

=
(5.7|og( Re/C, )+ 0.?2

The above equation is difficult to solve (foy) Because we can’t writes Explicitly. So use a
iterative (numerical) method : Call the ‘presenifimateCfn . Then an improve estimate w

_ 1
" (5.710g( Re[C, )+ o.}z

1
To get the method going, assume tﬁ;ipﬂ = m and then :

and Re=20000 from question 4.

OrC, =

be C; _, where:Cq

n C, (110°) | C, (107
1 / 11110
2 11110 1.294
3 1.294 3.635
4 3.635 3.134
5 3.134 3.199
6 3.199 3.190
7 3.190 3.191
8 3.191 3.191

To this degree of accuracy, we can expect no furthprovement with further value of n (ije
the result has converged to the solution of thegon) : G = 3.191*10°

Compare this with the answer fqrfound using the index law in question (3c).

\ Acceptable correlation with Blasius method |




Calculate the friction velocity V* for the flow ankdence the flow speed at the centerline

using the logarithmic law for the velocity profil€ompare this with the answer to (3b).
[ANS. V*=2.841m/s, Wha=2.936m/s]

Then:V' = /C, u
From question (3a)y_ =2.4 m/ssoV =0.138 m/s
V'y

Logarithmic law for velocity profile: Vi = 5.5Iog(—j+ 5.4 (1.3)
v

At the centerline (y=D/2), the velocity is maximuirhen using V* from above andfrom
question (3), we obtain u__, =2.841 m/<

The index law of question (3b) gawg,, =2.97 m/s. We know that the logarithmic la

underestimates the velocity at the pipe centrehénotes it was suggested that near
pipe center, the multiplicative constant 5.5 islaepd by 5.75. If this is done in equati
(1.3) then we find thau,__ =2.936 m/s. This last result is in better agreement with

index-law result.

the
bN
the

(5) The pipe used in Questions (3) and (4) is nascavered to have rough walls. The

equivalent sand-grain roughness sizgisk1.0 mm.

(a) Assuming the pipe wall to be completely rough claaithe new coefficient of

friction.

C, = 1 ~=9.157% 10° with R=D/2

i)

(b) By first calculating the friction velocity, V*, vdy that we are justified in making the

completely rough assumption.

V' =/C,.u_=0.230 m/s

Then kv =96.1
%

The completely rough assumption requ&/— >100. This is ‘almost’ completely rough !
v




(c) Using the value for the coefficient of friction fod in part (5a), calculate the
pressure head loss for the 5m length of pipe. Coenplais answer with that of

Question (3d) pertaining to the hydraulically sntoptpe assumption.
[ANS. (a)9.157x10°, (b) V*=0.230m/s,(c) 5.38m]

X
Also atthe wallr =D/2 : 7 =

(_@j _4r, _ 4Cf10ur2n

We know that 7 = (—%ji
dx )2

=8481.3 Pa/n
dx D

Ap

L
Pressure loss for LAp =L x8481.3= 42407 P with L=5 m
Equivalent head lossAp = pgAh thenAh=Ap/pg =5.38 m

This is the pressure loss per unit Iengt?‘(-re—j

(6) Make use of the Moody chart (Fig. 7.11 in tleeas) to determine the head loss due
to friction when water flows through 300m of 150ndrameter galvanized steel

pipe at 50 liters/s. Take the kinematic viscosiybe 1.14mrfls.
[ANS. 16.7m]

2

Mean velocity : aQ = , sou, =2.83 m/s

Re, = u,D 283><O]‘;5_372( 18
v 1.14x10

Properties of the galvanized steel is founded eNMoody chart — roughness table :
k, =0.15 mnrso k,/D =0.001

Then f = Ah2 =0.020¢
Loy,
D 29
So the head loss isfsh =0. 020&@ 2.83 = 16.7n
0.15 2x9.81

(7) Using the Moody chart, determine the diamefegalvanized steel pipe needed to
carry water ji= 10°Ns/n?, p= 10°kg/m°) a distance of 180m at 85liter/s with a

head loss of 9m. [ANS. 0.2 m]
2
First Q= U, sou, = 0398
[
Then : (i) Re, = oD = 0-10% 16 iy 1 =N _ga 1pe (iijy K = 00001
v U, D D
D ‘29

We have to find D so that these three equationsvardied (Moody chart). We use

a

trial error method to solve these equations.




Guess for D| Rg(*10% | k /D f (Moody) | f/D° Check solution

0.1 1.08 0.0015 0.0215 2150 D is too small
0.2 0.54 0.00075 0.0185 57.8 D is too larde
0.18 0.6 0.00833 0.0192 101.6 D is too small

We can deduce that D=0.19 m from the statistic ab@wv pratice we would chose larger
available size, i.e. D=0.2 m.

(8) A simple hydraulic system is illustrated in Figa. It consists of a large reservoir
and a horizontal pipeline 200m long dischargingtmosphere through a valve. The
first 120m of pipe connected to the reservoir hadiameter of 200 mm. The
remainder of the pipeline has a diameter of 250n@alvanized steel is used
throughout as the pipe material. The pipeline isnaxted to the reservoir at a point
8m below the water surface, Formulae for head lshee to sudden changes in

pipe diameter are given in Fig. 8b.

If the valve is set to discharge 0.F/mof Water (1=10°Ns/nf, p=1C’kg/n?) plot, to
scale, the hydraulic and energy gradelines (ie. waagations of piezometric and
total heads) for the pipe-line.
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200mm

'

T
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v
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Fig.8a
2 2
Fig. 8b (i) Head loss due to sudden enlargemehh;—lil—[%] J
g 2
2
(if) Head loss due to sudden contractioﬁh:i;—ug2 where k verified :
d./d; 0 0.2 0.4 0.6 0.8 1
k 0.5 0.45| 0.38] 0.28 0.14 0
d> dl
v
dl T d2
o u f -
1 uz 1 u
— —> —> —=
(i) (i T



Work from pipe entry A toward valve V:
- Losses in the entry of pipe A:

d, 02
dl

2 2
u, =29 =318 mis thenah =X = Ys = 0 258 1y
D

A 29 49

- Losses in the pipe A:

Re, =Ps - 63600
A %
Then k,=0.00015 n SO D£ =0.0007¢
A
: : Ah
Then in Moody chart we find f = 0 =0.019s0Ah=5.88 m
- A
Da 29
2
The dynamic head iéz% =0.515m
- Losses in the entry of pipe B:
U3 D,
Ah=—A]1-| =2 |=0.186
29 De
- Losses in the pipe B:
Uy =29 =2 04 mis so Re, =22 = 50900( and < = 0.000¢
B DB
Then in Moody chart we find f = LAh >-=0.0182s0Ah=1.235m
LU
Dy 29

2
The dynamic head ié;i:O.ZlZ n
g




(9) A single uniform joins two reservoirs of flui@s shown in Fig. 9a. Calculate the
percentage increase of flow rate obtainable ifmfrthe mid-point of this pipe,
another of the same diameter is added in paradlél &s shown in Fig 9b. Neglect
all losses except pipe friction and assume a comstad equal f for both pipes.

[ANS. 26.5 %]
| \
v

Fig. 9a L

’—4—\ v
b
Fig. 9b
C, =—"tv
Lo
2 m
The balance force on the fluid element givgs= (—@)2 -4pD
dx/4 L 4
- . : . D Ap
Combining above equations gives that:= —
2p0C. L
Cases of figure 9a:
L
U,=U,, Ap=Ap,, L=L sou; = %andApA: sl 22
pC L D

Cases of figure 9b:
1% half with a single pipeu_ =u, Ap=Ap,, L=L/2

D Ap, LoC
———"B andAp, = — U2,

sou; =
f
2" half with double pipeu,, = uj :%U'B, Ap=Apg, L=L/2
LoC .,

Ug

souy = p[C): A—EB andAp, =
f

But the pressure charge is the same for both ¢ayesd (b):

: . LoC LoC,( ., 1 . 5 . . 8
ApA :ApB+ApB < D f ZUi = D f (UBZ'FZUBZJ < ZUi :ZUBZ = Ug = EUA
2 2.
Also Q, =P and@, =P % thenq, :\/EQA =1.26%),




Moody diagram :
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