
ES3C9 

FLUID MECHANICS FOR MECHANICAL ENGINEERS 

Answers: Example Sheet 3 - Pipe Flows 

 
(1) Plane Poiseuille Flow: Consider the flow between two infinitely wide plates, driven 

by a pressure gradient, as shown in Fig. 1. ‘b’ is the width of the element of fluid 
consider in the ‘z’ direction. 

Fig. 1  
 

(a) Use the suggested fluid element to show that the velocity profile for laminar flow 
is given by :  
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2
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Force balance : ( )2 ' 2 2 'p y b x p p y bτ δ δ= + +  

Re-arrange : '
dp

y
dx

τ  = − 
 

 with y’=R–y 

Newton law for the viscosity : 
du

dy
τ µ=  

So : ( )1du dp
R y

dy dxµ
 = − − 
 

 

After integration (y): 
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The boundary conditions give : u=0 at y=0 and at y=2R 
So C=0 

Then : ( ) ( )21
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 Write down the maximum velocity umax in the pipe. 
 
The maximum velocity occurs when du/dy change sign, ie y=R 

So : 
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(b) By first evaluating the volumetric flow rate in the duct, show that the mean 
velocity is given by um= 2umax/3. Compare the present results for um and umax with 
those found for Poiseuille flow in a pipe with circular cross-section, ie. (from the 
notes): 
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Volumetric flow rate : ( )2
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Mean velocity : 2 mQ Rbu=  

So : 
2

3m

R dp
u

dxµ
 = − 
 

 

 
And then using umax for question (1a) : um= 2umax/3. 
 

Is the difference reasonable ? 
 
The effect of viscosity is greater in the circular-pipe case yielding lower speeds  
 
 
 (c) Compute (i) the wall shear stress (Use y’ instead of y). 
 
The wall shear follows from the definition of a Newtonian fluid : 
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The wall shear has the same magnitude at each wall, but by our sign convention, the upper 
wall has negative shear stress. 
 
 
 
 
 



 (ii) the stream function 
 
Since the flow is plane, steady, and incompressible a stream function exists: 

2

max 2

'
1

y
u u

y R

 ∂Ψ= = − ∂  
 v 0

x

∂Ψ= − =
∂

 

 
Integrating and setting ψ=0 at the centerline for convenience, we obtain 
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At the walls, y’= ± R and ψ= ±2umaxR/3 respectively. 
 
  (iii) the vorticity 
 
In plane flow, there is only a single nonzero vorticity component: 
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'z z
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δ δζ
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= = − =  

 
The vorticity is highest at the wall and is positive (counterclockwise) in the upper half 
and negative (clockwise) in the lower half of the fluid. Viscous flows are typically full 
of vorticity and are not at all irrotational. 
 
  (iv) the velocity potential 
 
From part (iii), the vorticity is finite. Therefore the flow is not irrotational, and the 
velocity potential does not exist. 
 
  (v) the average velocity 
 

The average velocity is defined as Vav = Q/A, where u Q dA= ∫ over the cross section. 

For our particular distribution u(y) from Eq. (1), we obtain :  
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In plane Poiseuille flow between parallel, plates, the average velocity is two-thirds of 
the maximum (or centerline) value. This result could also have been obtained from the. 
stream function derived in part (ii). From Eq. (4.95) : 

max max
max

2 2 4

3 3 3channel upper lower

u R u R
Q u R

 = Ψ − Ψ = − − = 
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  per unit width 

 
whence ( )1 max max/ 4 / 3 / 2 2 / 3av bV q A Ru R u== = = ,  the same result. 

This example illustrates a statement made earlier: Knowledge of the velocity vector V 
[as in Eq. 1] is essentially the solution to a fluid-mechanics problem, since all other 
flow properties can then be calculated. 



 
(2) Laminar flow exists in the inclined pipe shown in Fig. 2a. The flow is 

“downhill” being driven by both the gravitational force and an applied 
pressure gradient, dp/dx, along the length of the pipe. z is an upward 
coordinate whilst x is a coordinate along the pipe centerline. 

 
(a) By considering the suggested fluid element in Fig. 2a, show that the velocity 

profile is given by: 
 

( ) ( ) ( )2 21
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µ
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Fig. 2a   
 

Force balance in x-direction : ( )2 2sin 2r p mg r x p p rπ θ τ π δ δ π+ = + +  

Or m, the mass of the element is : 2m r xρπ δ=  

Also sin
dz

dx
θ = − (‘downhill’ => negative gradient) 

And 
dp

p x
dx

∂ = ∂  

After substitution in the force balance equation :  
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2 2

r dz dp d r
g gz p

dx dx dx
τ ρ ρ   = − + = − +   
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Newton law for the viscosity : 
du du

dy dr
τ µ µ= = −  (r is in the opposite direction to y) 

So : ( )
2

du d r
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ρ

µ
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After integration and with the boundary conditions u=0 at r=R : 

( ) ( ) ( )2 21
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 (1.2) 
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(b) ρ= 9 1 7 k g / m3 )  f e e d s  t h e  f l o w  i n  an inclined pipe as shown in Fig. 2b. 
Given that h = 3.0 m, z0=0.5m,  xo = 1.0m and R = 0.01m, find the maximum flow 
velocity Umax in the pipe. 

[ANS. 2.71 m/s] 
 

Fig. 2b   
 

Pressure in A : A Atmp p ghρ= +  

Pressure in B : 0 0B Atm A

dp
p p p gz x

dx
ρ= = + +  

So the pressure gradient is : 0

0

gh gzdp

dx x

ρ ρ+ − = 
 

 

Also if *p p gzρ= +  then 
dp dp

dx dx

∗

=  

Then, knowing that the maximum of velocity is at r =0 and using equation (1.2) :  

( ) 20
max

0

1
0 2.711 m/s

4

gh gz
u u R

x

ρ ρ
µ
 += = = 
 

 

 
(c) Show that the volumetric flow rate through the pipe, Q, is given by: 
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( )
0

2
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Then using equation (1.2) :
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Hence determine the mean velocity and confirm that the flow is, indeed, laminar 
[ANS. 1.36 m/s] 

Mean velocity : 2
mQ R uπ=  

Thus : ( )
2

max

1
1.356 m/s

8 2m

R d
u p gz u

dx

π ρ
µ
 = − + = = 
 

 

And then : Re 86 2000m
D

u Dρ
µ

= = ≪  so the flow is laminar. 

 
(3) Kerosine  (µ=0.00192Ns/m2, ρ=804kg/m3) flows in a horizontal pipe of diameter 2.0cm 

and length 5.0m. The volumetric flow rate, Q is 0.754 liters/s 
(a) Calculate the Reynolds number of the flow. 

 

Mean velocity : as 
2

4
mD u

Q
π= , so 2.4 m/smu =  

Reynolds number : Re 20000m
D

u Dρ
µ

= =  the flow is turbulent 

 
(b) Using the index laws for velocity profile, calculate the flow speed at the pipe 

centerline. 
 
From table in notes, choose n=6.6 for this Reynolds number. 

( )( )
max 2

1 2 1
2.97 m/s

2 m

n n
u u

n

+ +
= =  

 
(c) Use the Blasius equation to calculate the coefficient of friction and hence the shear 

stress at the wall for this flow. 
 
The Blasius equation is applicable at this Reynolds number: 

3
2 1 4

0.0395
3.322 10

Re
w

f
m D

C
u

τ
ρ

−= = = ×  

So : 15.38 Pawτ =  

 
(d) Calculate the pressure head loss for the 5 m length of pipe. 

 

To find the pressure loss, first find the pressure gradient: 
2

dp r

dx
τ  = − 

 
 

Also at the wall 2r D=  : wτ τ=  

So : 
4

3076 Pa/mwdp

dx D

τ − = = 
 

 

This is the pressure loss per unit length, ie 
dp p

dx L

∆ − = − 
 

 

Pressure loss for L : 3076 15380 Pap L∆ = × =  

Equivalent head loss : p g hρ∆ = ∆  then 1.95 mh p gρ∆ = ∆ =  



(e) Calculate the (output) power of a pump needed  to drive this flow. 
[ANS. (a) 20,000, (b) 2.97m/s, (c) 3.322x10-3, (d) 1.95m, (e) 11.6W] 

 

11.6 WP Q p= ∆ =  since ( )d
P Q g h mg h mg h

dt
ρ= ∆ = ∆ = ∆ɺ  

 
 
(4) For the same flow as described in Question (3), use the logarithmic law to calculate the 

coefficient of friction. 
 
 

Logarithmic law  for Cf:    ( )1
5.7 log Re 0.3f

f

C
C

= +  

Or 

( )( )2

1

5.7 log Re 0.3
f

f

C
C

=
+

 and Re=20000 from question 4. 

The above equation is difficult to solve (for Cf) because we can’t write Cf explicitly. So use a 

iterative (numerical) method : Call the ‘present’ estimate 
nf

C . Then an improve estimate will 

be  
1nf

C
+

, where: 
( )( )1 2
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5.7 log Re 0.3
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f
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+
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To get the method going, assume that ( )1 2

1

0 0.3nf
C

+
≈

+
 and then : 

 
n 

nf
C (*10-3) 

1nf
C

+
(*10-3) 

1 / 11110 
2 11110 1.294 
3 1.294 3.635 
4 3.635 3.134 
5 3.134 3.199 
6 3.199 3.190 
7 3.190 3.191 
8 3.191 3.191 

 
To this degree of accuracy, we can expect no further improvement with further value of n (i.e 
the result has converged to the solution of the equation) : Cf = 3.191*10-3 
 
Compare this with the answer for cf found using the index law in question (3c). 
 
Acceptable correlation with Blasius method  
 
 
 
 



 
 
Calculate the friction velocity V* for the flow and hence the flow speed at the centerline 
using the logarithmic law for the velocity profile. Compare this with the answer to (3b). 

[ANS. V*=2.841m/s, Umax=2.936m/s] 
 

As * wV
τ
ρ

=  and 
2

w
f

m

C
u

τ
ρ

= , so : 
2*

2f
m

V
C

u
=  

Then : * .f mV C u=  

From question (3a),  2.4 m/smu =  so * 0.138 m/sV =  

Logarithmic law for velocity profile:  
*

*
5.5log 5.4

u V y

V ν
 

= + 
 

 (1.3) 

 
At the centerline (y=D/2), the velocity is maximum. Then using V* from above and ν from 
question (3), we obtain :  max 2.841 m/su =  

 
The index law of question (3b) gave max 2.97 m/su = . We know that the logarithmic law 

underestimates the velocity at the pipe centre. In the notes it was suggested that near the 
pipe center, the multiplicative constant 5.5 is replaced by 5.75. If this is done in equation 
(1.3) then we find that max 2.936 m/su = . This last result is in better agreement with the 

index-law result. 
 
 
(5) The pipe used in Questions (3) and (4) is now discovered to have rough walls. The 

equivalent sand-grain roughness size, ks, is 1.0 mm. 
(a) Assuming the pipe wall to be completely rough calculate the new coefficient of 

friction. 
 

3
2

1
9.157 10

5.7 log 4.75
f

s

C
R

k

−= = ×
  +  

  

   with R=D/2 

 
(b) By first calculating the friction velocity, V*, verify that we are justified in making the 

completely rough assumption. 
 

* . 0.230 m/sf mV C u= =  

Then 
*

96.1sk V

ν
=  

The completely rough assumption require 
*

100sk V

ν
> . This is ‘almost’ completely rough ! 

 
 
 



(c) Using the value for the coefficient of friction found in part (5a), calculate the 
pressure head loss for the 5m length of pipe. Compare this answer with that of 
Question (3d) pertaining to the hydraulically smooth pipe assumption. 

[ANS. (a) 9.157x10-3, (b) V*=0.230m/s, (c) 5.38m] 
 

We know that : 
2

dp r

dx
τ  = − 

 
 

Also at the wall 2r D=  : wτ τ=  
244

8481.3 Pa/mf mw
C udp

dx D D

ρτ − = = = 
 

 

This is the pressure loss per unit length, ie 
dp p

dx L

∆ − = 
 

 

Pressure loss for L : 8481.3 42407 Pap L∆ = × =  with L=5 m 

Equivalent head loss : p g hρ∆ = ∆  then 5.38 mh p gρ∆ = ∆ =  

 
(6) Make use of the Moody chart (Fig. 7.11 in the notes) to determine the head loss due 

to friction when water flows through 300m of 150mm diameter galvanized steel 
pipe at 50 liters/s. Take the kinematic viscosity to be 1.14mm2/s. 

[ANS. 16.7m] 

Mean velocity : as 
2

4
mD u

Q
π= , so 2.83 m/smu =  

5
6

2.83 0.15
Re 3.72 10

1.14 10
m

D

u D

ν −

×= = = ×
×

 

 
Properties of the galvanized steel is founded in the Moody chart – roughness table : 

0.15 mmsk = so 0.001sk D =  

Then 2 0.0205
.
2

m

h
f

uL

D g

∆= =  

So the head loss is : 
2300 2.83

0.0205 16.7 m
0.15 2 9.81

h∆ = × × =
×

 

 
 
(7) Using the Moody chart, determine the diameter of galvanized steel pipe needed to 

carry  water (µ= 10-3Ns/m2, ρ= 103kg/m3) a distance of 180m at 85liter/s with a 
head loss of 9m.        [ANS. 0.2 m] 

 

First 
2

4
mD u

Q
π=  so 

2

0.108
mu

D
=  

Then : (i) 
60.108 10

Re m
D

u D

Dν
×= =  (ii) 5

2 84.1
.
2

m

h
f D

uL

D g

∆= =  (iii) 
0.00015sk

D D
=  

We have to find D so that these three equations are verified (Moody chart). We use a 
trial error method to solve these equations. 



Guess for D ReD (*106) 
sk D  f (Moody) 5f D  Check solution 

0.1 1.08 0.0015 0.0215 2150 D  is too small 
0.2 0.54 0.00075 0.0185 57.8 D is too large 
0.18 0.6 0.00833 0.0192 101.6 D is too small 
 
We can deduce that D=0.19 m from the statistic above. In pratice we would chose larger 
available size, i.e. D=0.2 m.  
 
 
(8) A simple hydraulic system is illustrated in Fig. 8a. It consists of a large reservoir 

and a horizontal pipeline 200m long discharging to atmosphere through a valve. The 
first 120m of pipe connected to the reservoir has a diameter of 200 mm. The 
remainder of the pipeline has a diameter of 250mm. Galvanized steel is used 
throughout as the pipe material. The pipeline is connected to the reservoir at a point 
8m below the water surface, Formulae for head losses due to sudden changes in 
pipe diameter are given in Fig. 8b. 

 
If the valve is set to discharge  0.1 m3/s of Water (µ=10-3Ns/m2,  ρ=103kg/m3)  plot, to 
scale, the hydraulic and energy gradelines (ie. the variations of piezometric and 
total heads) for the pipe-line. 

 

Fig. 8a   

Fig. 8b (i) Head loss due to sudden enlargement :
22

1 1

2

1
2

u d
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  
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(ii) Head loss due to sudden contraction : 
2
2

2

ku
h

g
∆ =  where k verified : 

d2/d1 0 0.2 0.4 0.6 0.8 1 
k 0.5 0.45 0.38 0.28 0.14 0 

 

(i)  (ii)  

200mm 

120m 

8m 

80m 

250mm 



Work from pipe entry A toward valve V:  
 
- Losses in the entry of pipe A:  
 

 2

1

0.2
0

d

d
= =

∞
 so k=0.5  

 
2

4
3.18 m/sA

A

Q
u

Dπ
= =  then 

2 2
2 0.258 m

2 4
s Ak u u

h
g g

∆ = = =  

 
- Losses in the pipe A: 
 

 Re 636000
A

A A
D

u D

ν
= =  

 Then  0.00015 msk =  so 0.00075s

A

k

D
=  

 Then in Moody chart we find : 2 0.019
.
2

A

A

h
f

uL

D g

∆= =  so 5.88 mh∆ =  

 The dynamic head is 
2

0.515 m
2

Au

g
=  

 
- Losses in the entry of pipe B: 
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1 0.186 m
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A A

B

u D
h

g D

  
 ∆ = − =    

 

 
- Losses in the pipe B: 
 

 
2

4
2.04 m/sB

B

Q
u

Dπ
= =  so Re 509000

B

B B
D

u D

ν
= =  and 0.0006s

B

k

D
=  

 Then in Moody chart we find : 2 0.0182
.
2

B

B

h
f

uL

D g

∆= =  so 1.235 mh∆ =  

 The dynamic head is 
2

0.212 m
2

Bu

g
=  

 
 
 
 
 
 
 
 



(9) A single uniform joins two reservoirs of fluid as shown in Fig. 9a. Calculate the 
percentage increase of flow rate obtainable if, from the mid-point of this pipe, 
another of the same diameter is added in parallel to it as shown in Fig 9b. Neglect 
all losses except pipe friction and assume a constant and equal f for both pipes. 

[ANS. 26.5 %] 

Fig. 9a   

Fig. 9b  
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w
f

m

C
u

τ

ρ
=   

The balance force on the fluid element gives: 
4 4w

dp D p D

dx L
τ ∆ = − = 
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Combining above equations gives that: 2

2m
f

D p
u

C Lρ
∆=  

 
Cases of figure 9a: 

 m au u= , Ap p∆ = ∆ , L=L so 2

2
A

A
f

pD
u

C Lρ
∆= and 22f

A A

L C
p u

D

ρ
∆ =  

Cases of figure 9b: 
1st half with a single pipe : '

m Bu u= , '
Bp p∆ = ∆ , L=L/2  

so 
'

'2 B
B

f

pD
u

C Lρ
∆=  and 2

' '
f

B B

L C
p u

D

ρ
∆ =  

 

2nd half with double pipe : '' '1

2m B Bu u u= = , ''
Bp p∆ = ∆ , L=L/2  

so 
''

''2 B
B

f

pD
u

C Lρ
∆=  and '' ''2f

B B

L C
p u

D

ρ
∆ =  

 
But the pressure charge is the same for both cases (a) and (b): 

' ''
A B Bp p p∆ = ∆ + ∆   2 '2 '21

2
4

f f
A B B

L C L C
u u u

D D

ρ ρ  ⇔ = + 
 

   2 '25
2

4A Bu u⇔ =    ' 8

5B Au u⇔ =  

Also 
2

4
A

A

D u
Q

π=  and 
2 '

'

4
B

B

D u
Q

π=  then ' 8
1.265

5B A AQ Q Q= =  

D 

L 

D 

D 

L/2 

D 

L/2 



Moody diagram : 
 

 


