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The search for minimum potential energy structures 
of small atomic clusters. 

Application of the ant colony algorithm* 
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**, Z. GBURSKI 
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The ant colony algorithm has been applied to the problem of finding the minimal potential energy 
configuration of a small physical system (cluster) of atoms interacting via the Lennard–Jones phenome-
nological potential. The ants were positively motivated if their activity (displacement of atomic positions) 
leads to a lower total potential energy of the system. Starting from a random spatial distribution of atoms, 
during the optimalization process, the ants were able to find configurations with energies much lower 
than the initial ones. The optimized configurations generated by the ant colony algorithm can be used as a 
good starting point for classical or ab initio molecular dynamics (MD) simulations. 
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1. Introduction 

The ant colony algorithm has been widely used to solve more and more problems 
including the famous Travelling Salesman Problem [1, 2], Vehicle Routing Problems 
[3], etc. The main idea of this algorithm is to duplicate the way the ants search for 
food and transport it to the ant-hill (using pheromone traces). In other words, it is an 
adaptation of the natural search behaviour of ants in an ant colony. Usually, at the 
beginning, the ants use, or try, many random paths. However, after some time – due to 
mutual exchange of information in the ant society achieved by chemical tracing 
(pheromone) – a particular path becomes the most preferred, i.e. there is the highest 
concentration of pheromone on this chosen track. The application of the ant colony 
algorithm to the important problem of searching for the minimal potential energy con-
figuration of a physical system of interacting atoms is shown. 

_________  
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**Corresponding author, e-mail: praczyns@us.edu.pl 



P. RACZYŃSKI, Z. GBURSKI 600 

2. Search procedure 

The physical system of interest is a cluster composed of n identical atoms embed-
ded in a cubic box of edge length a. To be more specific, let us consider they are ar-
gon (Ar) atoms and n = 7. The interaction potential V(rij) between a pair of argon at-
oms is well described by the Lennard–Jones (LJ) equation [4] 
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where rij is the distance between an ith and jth atom. The total potential energy of the 
system is  
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The LJ potential parameters ε and σ for argon are given in Table 1 [5], where kB is the 
Boltzmann constant. 

Table 1. The Lennard–Jones parameters for argon 

Atoms ε/kB [K] σ [Å] m [10–25 kg] 

Ar  119.8 3.4 0.664 

 
The number of ants has been chosen as equal to the number of atoms (interacting 

sites). The initial position ri = (xi, yi, zi) of the ith atom has been randomly chosen within 
the range [0,a] for each component of ri. In case the positions of neighbouring atoms 
were too close to each other, the drawing process for these atoms was repeated. This 
ensures that the system does not explode accidentally. The centre of mass RCM of the 
system was calculated. The ants were positively motivated by three factors: pheromone 
value, drawing the positions of the atoms towards the centre of mass and most impor-
tanly, decreasing of the total potential energy. The positions of n atoms can be repre-
sented by a graph in three-dimensional space. The vertices of this graph are Ar atoms. 
Each ant draws one graph’s vertex (pick up an atom). Following the ant algorithm pro-
cedure [6], the pheromone matrix for this initial configuration must be defined. The 
pheromone matrix is composed of a pair (i, j) of coefficients characterising the attrac-
tiveness of the (i, j) connection (edge) between the ith and jth vertex of the graph. Since 
at the begining no ant knows more or less than any other, all coefficients of the phero-
mone matrix are initialized by the same value τ  between [0,1]. 

After establishing the initial conditions, the algorithm described starts. This means 
the first ant randomly moves the position of one of the n – 1 atoms (excluding the 
atom it is associated with) and the Lennard–Jones potential for this perturbed configu-
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ration is calculated and memorized. Then the ant puts the just moved atom to its pre-
vious position and randomly moves the next one of the n – 2 atoms. The LJ potential 
for this system is again calculated and memorized. The ant applies the same procedure 
to the remaining n – 3 atoms, etc. The described procedure is repeated by all ants. 

Now, each ant knows n – 1 potential energies (configurations) corresponding to 
the random displacements of all vertices of the graph (atoms), except the one where 
the ant actually remains. To consider next move the ant can use one of two possibili-
ties distinguished by a real number q0 (q0∈[0...1]), which is supplied in the set of the 
starting parameters (see Table 1). The algorithm randomly draws a number between 0 
and 1 and compares it to q0. If this number is smaller than q0, the first possibility is to 
find a local best minimum [6] defined by the formula: 

( , ) arg max{[ ( , )][ ( , )] }S i j i j i j βτ η=  

where τ(i, j) is the pheromone coefficient between the ith and jth vertical (atom),  
η(i, j) = 1/ϕ, where ϕ is the total potential energy of the system in which only the 
position of (jth) atom has been changed, β is a heuristic parameter which determines 
the relative importance of the pheromone versus the atomic displacement (β > 0). The 
ant will chose the configuration for which the calculated value S(i,j) is the largest, 
denoted here by argmax. The other possibility (when the randomly drawn number is 
larger than q0) is to construct the matrix of probabilities 
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 0 ≤ p(i, j) ≤ 1 

The value of p(i, j) is larger if the LJ potential energy is lower and the pheromone 
value between the ith and jth vertex is larger. By definition, the sum over j of p(i, j) 
must be equal to 1 for any fixed i. For fixed i = i0, each p(i0, j) can be associated with 
a particular segment from the [0, 1] range. The sum of these segments must be equal 
to 1 and the whole [0, 1] range is filled. The larger segment of [0, 1] range is associated 
with the larger p(i0, j). Then a real number beetwen 0 and 1 is randomly generated, this 
value falls into one of the segments associated with p(i0, j), and for that matter with one 
of the vertices j. If the random number indicates the p(i0, j′) segment of [0,1], the vertex 
to be chosen is j′. 

Before the algorithm step is completed, the local pheromone update is required, 
i.e. each ant between t, t + 1 step, lays a quantity of pheromone on the edge connect-
ing ith and jth vertices (in our case i0 and j′ vertices), following the formula [7]: 

 ( , ) ( , ) 0( , 1) (1 ) ( )i j i jt t t kΔτ ρ τ ρ τ+ = − +   (1) 

where k is the number of ants that visited the same atom (i) and all of them moved 
another atom (j), ρ is a real number between <0,1> which takes care of the intensity of 
pheromone [7]. The applied ant algorithm parameters are given in Table 2. 
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Table 2. The applied algorithm parameters 

Parameter symbol Value 

β 5 
q0 0.65 
ρ 0.23 
τ0 1 

 
What has been described is one step of the algorithm. The next steps would be es-

sentially similar except that the ant cannot move the vertices already moved in the 
previous steps. Hence, the total number of steps in the cycle cannot be higher than the 
number of vertices (atoms) minus one. 

At the end of each cycle (composed of maximum n – 1 steps), the global phero-
mone update is performed. This means that the most effective attempt (displacement 
of atoms) which leads to the lowest LJ potential energy during the cycle, will be 
marked by an additional amount of pheromone. The formula for global pheromone 
update is given by [6]: 

( , ) ( , ) 0 ( , )( , ) (1 ) ( ) ( , )i j i j i jt t z t t t zΔτ ρ τ ρ τ′ ′+ = − + +  

where ρ′  has the same meaning as ρ in Eq. (1), z is the sum of steps in a cycle. The 
most effective try will be used as a starting point for a new cycle. 

The number of cycles can be very large, the finite number of cycles is called an 
experiment. For the interpretation we used the average of many experiments. 

3. Results 

Calculations were performed for a small cluster composed of n = 7 argon atoms. 
Figure 1 shows an example of the initial (randomly chosen) configuration of atoms 
located in a cubic box (the length of edge a = 3 nm). 

 
Fig. 1. The snapshot of the starting  

configuration of Ar7 cluster (a = 3 nm) 
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Several values of a have been used for testing the effectiveness of the alghorithm. 
A natural physical criterion for a stable equilibrium structure is the requirement of 
minimum potential energy in the system. Guided by this, the ant colony optimaliza-
tion procedure has been performed. The evolution of potential energy V of the Ar7 
cluster averaged over 103 experiments as a function of the number of cycles is given 
in Fig. 2, for several sizes of the cubic box. 

 
Fig. 2. The average values of the potential energy of Ar7 cluster (a = 3, 6, 10 nm) 

 
Fig. 3. Examples of potential energy of Ar7 cluster (a = 3, 6, 10 nm) 

The quick relaxation of V towards the required (lower) value can be seen, fol-
lowed by the saturation. Performing more cycles in the saturation area does not seem 
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to be effective. The saturated potential energy does depend on the size of the box. The 
start of optimization procedure in a smaller box leads to a substantially lower energy. 
Making the box too large generates too many configurations to be checked and the 
algorithm has the tendency to stop at the local minimum. It is not believed that this 
type of weakness of the ant algorithm in this context has been reported. Figure 2 
shows the average of 103 experiments. Figure 3 presents an example of single optimi-
zation (non averaged) which is much better as it shows a lower potential energy than 
the averaged one. The differences between single optimization could be quite substan-
tial and in Fig. 4 the comparison of two extreme optimizations for a = 3 nm is shown. 

 
Fig. 4. The comparison of two extreme optimalizations of Ar7 (a = 3 nm) 

 
Fig. 5. The calculation time of one cycle of optimalization for Arn clusters 

(n = 5, 7, 10, 13, 15; a = 3 nm; CPU AMD Athlon 2GHz) 



Application of the ant colony algorithm 

 

605 

 

It was found that the calculation time tc required for one cycle was dependent on 
the number n of atoms in the cluster. This is illustrated in Fig. 5, tc increases rapidly, 
non-linearly, with the growing number of atoms. 

 
Fig. 6. The snapshot of optimized configuration of Ar7 cluster (a = 3 nm) 

The final cluster’s configuration obtained from the initial positions of argon atoms 
(shown in Fig. 1) is given in Fig. 6. 

4. Conclusions 

Although the authors cannot guarantee that this is the structure corresponding to 
the global minimum of potential energy, the increased level of condensation (packing) 
of the cluster is evident. That was the configuration looked for at the beginning of 
molecular dynamics or Monte Carlo simulations of the clusters. Starting from this, 
partially optimized configuration could save computer time for calculations which are 
solely based on laws of physics (for example molecular dynamics (MD) simulations). 
This study shows that the ant colony algorithm could be implemented into MD pro-
grams as a helpful tool for establishing a reasonable starting configuration. Unfortu-
nately, without additional conditions, one should not expect the ant colony algorithm 
to guarantee finding the global minimum of potential energy. 
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