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Abstract- Over the past 20 years atomic cluster struc-
tures have been intensively studied because of their im-
portance in physics, chemistry and recently material sci-
ence. Unfortunately finding the lowest energy struc-
ture, which is the most stable configuration, is NP-hard.
In this paper we present preliminary results on an ant
colony optimization algorithm used in conjunction with
a Monte Carlo sampling method to find low energy con-
figurations of small silicon atomic clusters.

1 Introduction

Atomic clusters are aggregates ofatoms held together by the
same forces that cause, for example, phase transition from
vapor to liquid, formations of crystals, and so on. Cluster
sizes range from as few as three atoms to more than several
hundred atoms. In bulk material physical properties exist in-
dependent in size, but as things become sufficiently small,
size does matter. The physical and chemical characteris-
tics of a cluster often varies with its size. Indeed, even the
addition of a single atom can result in an entirely different
structure. How large does a cluster have to grow before the
bulk properties prevail? At present this question remains
unanswered.

Atomic clusters have been studied for some time, but the
emergence of the nanotechnology field in recent years has
made cluster research especially important. One of the most
exciting research areas involves the role clusters play in the
design of nano-scale systems. For example, researchers re-
cently discovered 20-atom gold clusters have large energy
gaps [1]. This means large amounts of energy are needed
to induce any chemical reactions with them. Since the
gold clusters are chemically inert, they could be used as
insulators-even though bulk gold is an excellent electrical
conductor! Moreover, their inertness suggests a potential
use as a building block for new materials.

In this work we are interested in the cluster conforma-
tion (i.e., the 3-D structure) which is intimately related to
the chemical and physical properties of the clusters. Among
all possible atomic arrangements, the conformation with the
greatest stability is the most important. The stability of any
cluster conformation is determined, in part, by the total en-
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ergy of the cluster. By exploiting the Born-Oppenheimer
approximation [2], one can express the total energy of an
atomic cluster as a function of the positions of the individ-
ual atoms1. That is,

E = E(rl,... rN) (1)
where E is the total energy, N is the number of atoms in the
cluster, and ri is the position of the i-th atom. Since the total
energy is invariant with respect to the overall translation and
rotation of the whole cluster, the total number of degrees of
freedom is 3N - 6.

The energy required to dissociate a conformation into
isolated atoms is called the clusters binding energy. A lower
total energy value corresponds to a higher binding energy
magnitude. Consequently, conformations with minimum
total energy are the most stable2. The problem of finding
this minimum energy structure is therefore equivalent to op-
timizing E with respect to variations in all 3N - 6 degrees
of freedom. Our object is then to solve the following opti-
mization problem:

Given an atomic cluster ofN atoms which are
subject to two-body centralforces, find the con-
formation in 3-D Euclidean space that has the
minimum total energy.

One method of solving this optimization problem is to ex-
plore the potential energy surface (PES) composed of all
possible cluster conformations. Unfortunately, as the clus-
ter size increases, so does the number of degrees of freedom
in the placement of the atoms. This characteristic produces
a PES where the number of local optima grows exponen-
tially with the cluster size [3]. Determining the ground-state
energy level, which is the most energetically stable level, is
extremely difficult. Wille and Vennik [4] proved this prob-
lem is NP-hard for homonuclear clusters (i.e., clusters with
only one type of atom) and Greenwood [5] later proved

'The Born-Oppenheimer approximation says atomic nuclei are station-
ary with respect to the electrons because they are so much heavier than
the electrons are. Consequently, electron-nucleus interactions can ignore
nuclei movements and need only consider potential energies.

2Stability is with respect to the internal energy of the cluster. Free en-
ergy is not considered in this paper.
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the same thing for heteronuclear clusters. Hence, heuristic
search techniques are the only viable alternative.

Genetic algorithms (GAs) have been used to search for
low energy cluster structures. The most comprehensive
work in this area was conducted by Wolf and Landman
where the GA searched for optimal structures in clusters
with up to 100 atoms [6]. They modified the GA in spe-
cial ways to improve its search capability. For instance,
they added twinning mutations and seeded the population
with structural motifs. Unfortunately, these modifications
aren't universal because the PES topology depends on the
potential energy function that was selected. Hence, the op-
timized GA proposed by Wolf and Landman-which was
designed for a Lennard-Jones potential energy function-
is not widely usable. Every time the energy function is
changed, the GA must be re-optimized.

In this paper we describe a new search method that uses
ant colony optimization (ACO) in conjunction with Monte
Carlo sampling. What makes our method especially appeal-
ing is the search method is universal-i.e., no fine-tuning is
needed if the energy function is changed. To our knowledge
ACO has never been used for atomic cluster studies. Our
preliminary results suggest ACO, augmented with Monte
Carlo sampling, is a powerful combination capable of pro-
ducing excellent results.

The paper is organized as follows. An overview of
atomic clusters is provided in Section 2. Section 3 reviews
the ACO approach and shows how it is used to search for
low energy conformations. Section 4 presents some exper-
iments conducted with small clusters of silicon atoms. Fi-
nally, Section 5 discuss some future work.

2 Homonuclear Clusters and Potential Energy
Functions

The objective is to find the lowest energy conformation be-
cause it is the most stable conformation. But, how ex-
actly does one quantify the energy of a conformation? In
principle, one may obtain the total energy of a cluster in a
given conformation using the most accurate ab initio meth-
ods. (ab initio calculations do not rely on experimental
data. All calculations involve the electronic Hamiltonian
used in Schr6denger's equation.) The methods required by
these methods, however, scale typically as the 4th power
of the number of electrons. They are therefore impractical
even for a single large cluster conformation evaluation let
alone global optimization. Practical alternatives to ab ini-
tio methods include density functional methods and simple
force fields derived from fitting analytical function to em-
pirical and/or ab initio data. In this work, we present pre-
liminary results using the latter approach for the potential
energy functions. In particular, we approximate the total
energy as the sum of all the pairwise interactions between

atoms:

N-1 N

E = E E v(rij)
i=1 j=i+l

(2)

where rij is the Euclidean distance between atoms i and
j, and v(rij) is the pairwise potential energy function.
Such approximations are adequate when quantum effects
and many-body effects are negligible.
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Figure 1: The scaled Lennard-Jones potential function.

A commonly used pairwise potential energy function for
(1) is the scaled Lennard-Jones potential function

(rij) = (1) - 2 (3)

The first term in (3) accounts for the repulsion between
atoms and is the dominant interaction when atoms are only
a short distance apart. The second term represents the at-
tractive component between neutral atoms and this compo-
nent dominates as the distance increases. This function is
scaled in the sense that the globally potential energy level
v (ro) = -1. occurs with a bond distance of ro = 1. Fig-
ure 1 shows this pairwise potential function.

Having defined a pairwise potential energy function one
can now construct cluster conformations and compute their
energy level using (3). Table 1 gives the globally mini-
mum total energy conformations for small clusters using the
scaled Lennard-Jones potential energy function.

3 Using ACO in Cluster Searches

3.1 ACO Overview

Ants are social insects with behaviors oriented towards the
good of the colony they live in. Of particular interest is
the way they forage for food. Ants keep track of the path
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Table 1: Optimal conformations for small clusters [7].

from a colony to a food source by depositing a chemical
pheromone on the trail. Other ants can detect this chem-
ical and the stronger the concentration the more favorable
the trail. Over time the shortest path will tend to have the
strongest pheromone concentration.

Ant algorithms use multiple agents to search for the solu-
tion to difficult combinatorial optimization problems. (See
[8] for a good introduction.) They conduct this search
by emulating a colony of ants. Each agent represents an

ant that explores the edges of a graph, thereby incremen-
tally constructing a solution to the optimization problem.
As the ant moves throughout the graph it deposits artifi-
cial pheromones on graph edges that are part of good so-

lutions. Other agents can read these pheromone values.
Hence, agents communicate with each other using a form
of distributed memory. Ant algorithms are particularly
well suited for optimization problems that involve paths in
graphs such as routing in communications networks, vehi-
cle routing and the well-known Traveling Salesman Prob-
lem (TSP).

The ACO algorithm does differ in several respects from
real ants [8]:

D Ants are artificial agents that transition from one dis-
crete state to another discrete state.

* Ants have an internal state that records previous
movements.

* Ants deposit an amount of pheromone which reflects
a solution's quality.

* Artificial ants can exhibit behaviors (such as back-
tracking) which real ants don't do.

The basic ACO algorithm is shown in Figure 2.

During each iteration of the ACO algorithm an ant moves
across some edge to a new node. Let rij (t) be the amount
of pheromone on edge (i, j) of the graph at time t. (The
more there is, the more favorable the edge.) As soon as

an ant traverses an edge, the pheromone level is updated as

follows

Figure 2: Basic ACO algorithm for solving TSP instances.

Tij(t + 1) = (1-P) ri (t) +p mo (4)

where p is a user-defined constant, and ro is the initial
pheromone level. p determines the pheromone evaporation
level. We used p = 0.1 and ro _ 10-6.

After N iterations the ant will find a tour of length N.
At that time the following global update rule is applied

r7j(t+N) = (1-or) (t) + a A7 (5)

where a is a user-defined constant, and is the total energy
of the cluster

E if edge is in tour
O otherwise

The probability that an ant k on atom r will choose to
move to atom s is given by a random proportional rule:

[T(r, s)] [ij(r, s)]P ifs Jk (r)

Pk (r, s) EJk (r) [T (r, u)] [r7 (r, u)]

0 otherwise
(6)

where r is the pheromone level, q7 = 1/((r)rs + e) with
E = 1.000001 to keep the denominator from going to zero.

(Recall the Lennard-Jones energy function has a minimum
value of -1.) (r), is the pairwise energy between atoms r

and s computed using (3). Jk (r) is the set of atoms that
remain to be visited by ant k positioned on atom r. is
a user-defined positive parameter which determines the rel-
ative importance between the pheromone level and the en-

ergy level.
An ant located on atom r chooses the atom s to move to

by applying a state transition rule given by
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N I Conformation
2 linear chain separated by 1 unit
3 equilateral triangle each side 1 unit
4 tetrahedron, each side one unit
5 triangular bipyramid, slightly contracted

along the symmetry and distended in the
symmetry plane

6 regular octahedron with slightly
contracted sides

Initialize pheromone levels on each edge
while(termination condition not met)

position each ant on a different node
do

each ant incrementally applies a state transition rule
to construct a tour.

Update pheromones on visited edges using a local
update rule.

until (all ants construct a tour)
Update pheromones using a global updating rule

end while
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argmaXUEJk (r){ [r(r,s)]- [7(r)s)]/3} ifq <qo
s otherwise

(7)
where q is a random number uniformly distributed between
0 and 1, qo is a constant (0 < qo < 1), S is a random vari-
able selected according to the probability distribution given
in (6).

The state transition rule given by (6) and (7) is a pseudo-
random proportional rule. This rule tends to move atoms
closer just like the random proportional rule does. Before
choosing an atom to move to, the ant samples a random
number q from the unit interval and compares it to a user
defined constant qo. This constant allows the user to trade-
off exploitation and exploration. That is, as qo -+ 1, the
ant favors moving to an atom that lowers the energy. Con-
versely, as qo -+ 0 lower energy moves are abandoned in
favor of doing more exploration. If q < qo, then (7) governs
the ant's movement; otherwise, (6) is used.

3.2 Cluster Searching

Before the ants begin foraging the atoms must be placed in
3-D space. We used a Monte Carlo method where a large
number of atoms are randomly scattered. The number of
atoms should be at least ION for a cluster of size N. The
ants were then randomly placed on atoms. An ant must now
visit exactly N - 1 other atoms to complete a tour of length
N. This process is shown in Figure 3 where two tours of
length 4 are shown. Notice how the tour creates a cluster
structure.

The Euclidean distance between two atoms in the tour is
plugged into (3) to get the pairwise potential energy. The
total energy for the entire cluster is found by summing the
individual pairwise energies. After one interaction is com-
plete the best (i.e., lowest energy) tour is kept and the re-
maining atoms are again randomly scattered in 3-D space.
Another iteration is then run. This process continues until
the termination criteria is met.

Finally, the Monte Carlo sampling we used in our exper-
iments randomly distributed atoms uniformally around the
origin. This is not a requirement. Indeed, if some knowl-
edge about the atomic cluster structure is known a priori,
the distribution can be modified accordingly. This should
help control the number of iterations.

4 Experimental Results

Initially we randomly placed 100 atoms in a 3 dimensional
space sized 10 x 10 x 10. The optimal energy 7-atom clus-
ter was then embedded among the randomly placed atoms
in order to determine how well the algorithm would do at

0 0

0

o0
0

Figure 3: A Monte Carlo technique is used to position atoms
in 3D space. Two tours of length 4 are highlighted. Each
tour creates a 4-atom cluster. An atom may be in more than
one tour.

finding the embedded cluster. Ten ants were then randomly
placed at random atom locations within the 3D space in each
generation. Each run went for 20 generations. In eight of
the ten runs the ants found the optimal configuration. (In the
other two runs low energy configurations were found, but
not the optimal one.) This performance is rather remarkable
considering the ants have (170) possible configurations to
chose from. It also shows the efficacy of our approach. Fig-
ure 5 shows the optimal structure for the 7-atom Si cluster
using the Lennard-Jones potential energy function3. This
structure has an energy of -16.4353 eV.

The next experiment duplicates the first except that the
known optimal energy cluster was not embedded with the
randomly placed atoms. The best (lowest energy 7-atom
cluster) found in five runs of the program had a cluster en-
ergy of -8.45925 eV, which is considerably higher than the
optimal value. We attempted to improve on this result by
"relaxing" the structure.

Relaxation refers to perturbing the final best structure
to achieve a lower energy value. Once found, this per-
turbed structure replaces the old one, which is analogous
to Lamarkian optimization sometimes used in GAs. Molec-
ular dynamics (MD) is a common relaxation method. In
this method each atom is treated as a point mass and simple
Newtonian force equations simulate their interactions. An-
other method is gradient search that looks for low spots in
the PES surface. Both of these methods are not trivial to
implement, so we devised our own simple method, which
uses simple hill-climbing in each dimension. Our relaxation
method is shown in Figure 4.

Unfortunately, after relaxation the energy only reduced

3A1l cluster graphics in the paper are produced by the RasMol software.
See http://www.umass.edu/microbio/rasmol/ for further information.
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Figure 4: A simple relaxation routine. Sr is a small constant
used to perturb an atom's location in 3D-space.

slightly to -8.47173 eV. Obviously a more sophisticated
method such as MD is needed. However, instead of tak-
ing that approach something simpler was tried first-and
the improvement was surprizing. We simply increased the
number of random atoms, which should improve the like-
lihood of optimally placing a subset of atoms. After ran-

domly placed 1000 atoms in the 10 x 10 x 10 3D space
the ant algorithm was re-run (but without using any relax-
ation). The result in this case was a cluster with an energy

of -1 1.5 1-over a 26% improvement. This cluster is shown
in Figure 6.

At first glance there is a noticeable difference between
the optimal structure in Figure 5 and Figure 6, but a closer
looks shows they are actually quite similar. If the far left
atom in Figure 6 is rotated upwards it becomes planer with
four other atoms. RasMol doesn't instantiate edges (repre-
senting chemical bonds) unless the atoms are within a cer-

tain minimum distance. After rotation this atom would be
close enough to form a chemical bond between it and the
upper, lower, and front atoms. If the far right atom is moved
slightly inward, shortening the bond length with the front
atom, this should put it within close proximity to the up-

per and lower atoms, which will add the two missing edges.
(Silicon has a valence of 4, so these bonds form naturally.)
A good relaxation method would identify these preferred
atom positions.

Figure 5: Optimal 7-atom Si structure for the Lennard-Jones
potential energy. The spheres represent atoms and the edges
represent chemical bonds.

5 Future Work

Algorithms that emulate what nature does have a real po-

tential for finding good solutions to the clustering problem.
Unfortunately, these algorithms perform a macro-search,
making it difficult to find the lowest energy configuration
in a highly multimodal PES. In all circumstances the algo-
rithm must be augmented with some sort of relaxation in or-

der to find really good low energy structures [9]. Our ACO
algorithm is no exception. We intend to try a more sophis-
ticated relaxation method. The bound constrained method
proposed by Byrd et al. [10] is a good first choice because
of its wide acceptance for these type of problems.

The Lennard-Jones PES is a generic energy function
suitable for any type of atomic cluster (even heteronuclear
ones.) There are PES designed specifically for Si atom clus-
ters such as the Stillinger-Weber potential [ 1], which is
designed to produce a diamond shape for solid-state sili-
con. We decided not to use these in a preliminary study be-
cause the Lennard-Jones energy function is trivial to incor-
porate while the 3-body potentials are not. (The Stillinger-
Weber potential function requires angular information be-
tween atom triplets.) Of course now that we have shown
what ACO can do, moving to a more sophisticated potential
function is a logic next step.

It is worth repeating that switching from one potential
function to a different one does not require any retuning of
the ACO algorithm, but it will require retuning a GA. Each
potential energy function creates a different PES topology.
GAs must be re-optimized each time a change is made be-
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Let Sr = 0.01
foreach atom in cluster

foreach dimension (x, y, z)
E= cluster energy
el = cluster energy at atom location - Jr
e2= cluster energy at atom location + Sr
if (el == min(e 1, e2, Er))
move atom to current location - Sr

else
{

if (e2 == min(el1 e2, E,))
move atom to current location + Sr

}
else
E, is best, so do nothing

end if
end foreach

end foreach
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Figure 6: 7-atom Si structure for the Lennard-Jones poten-
tial energy found from a random placement of 1000 atoms
(see text).

cause reproduction operators that work for one PES topol-
ogy may not work well in another. Hence, ourACO method
is better suited for finding homonuclear or heteronuclear
atomic structures-especially when more than one poten-
tial function is likely to be used.
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