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ABSTRACT: Global optimization of binary Lennard-Jones clusters is a challenging pro-
blem in computational chemistry. The difficulty lies in not only that there are enormous
local minima on the potential energy surface but also that we must determine both the
coordinate position and the atom type for each atom and thus have to deal with both
continuous and combinatorial optimization. This paper presents a heuristic algorithm
(denoted by 3OP) which makes extensive use of three perturbation operators. With these
operators, the proposed 3OP algorithm can efficiently move from a poor local minimum to
another better local minimum and detect the global minimum through a sequence of local
minima with decreasing energy. The proposed 3OP algorithm has been evaluated on a set
of 96 � 6 instances with up to 100 atoms. We have found most putative global minima
listed in the Cambridge Cluster Database as well as discovering 12 new global minima
missed in previous research.

’ INTRODUCTION

The study of binary clusters is very important both because
alloy clusters play a fundamental role in catalysis and because the
binary clusters allow us to tailor their property through the choice
of atom types and composition, potentially leading to new
properties which cannot be found on monatomic clusters.1,2

However, binary clusters also present new challenges. Global
optimization of binary clusters is significantly more difficult than
that of monatomic clusters. We not only need to place the atoms
to some suitable positions such that they form a low-energy
geometrical structure but also have to assign an identity to each
atom such that we can find out the lowest-energy solution among
large amounts of homotops.

For the monatomic clusters, the Lennard-Jones (LJ) clusters
are regarded as a standard benchmark system. Hundreds of
papers have been published for this model. Variousmethods have
been proposed, including basin hopping and its variant,3-5 lattice
methods,6-10 population-based methods,11-14 two-phase local
search,15,16 minima hopping,17 funnel hopping18 and so on.
Using these methods, researchers have found putative global
minima with up to 1610 atoms, which are now deposited in the
Cambridge Cluster Database (CCD).19

For the binary clusters, the binary Lennard-Jones (BLJ)
clusters are suggested to be a benchmark system.1,2 However,
compared with LJ clusters, there is much less work on the BLJ
clusters. In 2005, Doye and Meyer first started a systematic
exploration of the BLJ model.1 Using the basin-hopping method,
they published the putative global minima with up to N = 100
atoms for a range of LJ parameters. Later in 2009, Cassioli et al.
reexamined the BLJ benchmark system using a method combin-
ing population basin hopping and two-phase local search and

have found as many as 95 improved solutions.20 According to the
CCD, Pullan also found three improved solutions. Lately, Marques
and Pereira21 developed an evolutionary algorithm and discovered
one new global minimum forN = 38 and σBB = 1.05. Very recently
in August and September, 2010, Goedecker and Kolossvary,
respectively, published 17 improved solutions on the CCD.19

This paper focuses on global optimization of BLJ clusters. To
achieve this, we propose a heuristic algorithm (called 3OP) and test
it on the BLJ benchmark system with up to 100 atoms. The
computational results are compared with the results reported in
the literature, showing the effectiveness of the proposed algorithm.

’POTENTIAL

In BLJ clusters, each atom can be of two different types: A and
B. And every two atoms i and j interact by a pair potential:
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whereR andβ are the atom types of atoms i and j (R, β∈ {A, B}),
εRβ is the depth of the potential well, and 21/6σRβ is the
equilibrium distance. The energy of the whole cluster is the
summation of all pairwise potentials:

E ¼ ∑
i < j

vði, jÞ ð2Þ
In this paper, we use the same settings adopted by previous

researchers1,2,20,21 and choose εAA = εBB = εAB = εBA = 1, σAA = 1,
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and σAB = σBA = 0.5 � (σAA þ σBB). Then, each problem
instance is decided by two parameters: the number of atoms N
and σBB. The whole BLJ clusters benchmark system consists of
96� 6 instances with 5e Ne 100 and σBB ∈ {1.05, 1.10, 1.15,
1.20, 1.25, 1.30}.

Note that, for global optimization of BLJ clusters, we have to
determine both the atom type (A or B) and the coordinate
position for each atom. Therefore, the number of local minima
on the potential energy surface of a N-atom BLJ cluster is much
larger than that of a N-atom LJ cluster. We can make a rough
comparison as follows: For a specific stable configuration of a LJ
cluster, we assign a certain atom type to each atom. Then, we
locally optimize the configuration and obtain a stable configura-
tion for the BLJ cluster. In total, there are 2N different ways to
choose atom types for N atoms. Thus, we can obtain up to 2N

different local minima for the BLJ cluster from one local
minimum of a LJ cluster.

From the perspective of optimization, the BLJ clusters pro-
blem is very interesting because it is a mixture of continuous
(determine atom positions) and combinatorial (determine atom
types) optimizations.

’ALGORITHM

The proposed 3OP algorithm is composed of three proce-
dures: KNEAD, SMOOTH, and FLIP. The KNEAD and
SMOOTH procedures are used to optimize the cluster’s geome-
trical structure, and the FLIP procedure is used to choose
identities for the atoms.

These three procedures share two common features: First,
each of them starts from a locally optimal configuration and aims
to improve it by repeatedly imposing some perturbations on it.
Second, they have the same acceptance/rejection rule. That is to
say, for the current locally optimal configuration X, they perturb
it and locally optimize the perturbed X to obtain a new local
minimum Y. Specifically, if E(Y) < E(X), X is replaced by Y as the
incumbent solution; otherwise, X is still kept as the incumbent
solution. The difference among these three procedures is that
they use different perturbation operators and have different
stopping criteria. The details are described below.
The KNEAD Procedure. The KNEAD procedure aims to

improve a locally optimal configuration by moving several high-
energy atoms to the interior of the cluster. The energy of atom i is
defined as8,23

Ei ¼ ∑
N

j¼ 1, j 6¼i
vði, jÞ ð3Þ

In the KNEAD procedure, we try to improve the current local
minimum X by repeating the following three steps. First, we find
out the top m (m is a random integer between 1 and 0.1 � N)
highest-energy atoms in X and move each of them to a random
position in the interior of the cluster, so that the distance between
each moved atom and the mass center of the cluster is less than d
(d = 2). Second, we locally optimize the perturbed configuration
using the limited memory Broyden-Fletcher-Goldfarb-Shan-
no (LBFGS) algorithm22 and obtain a new local minimum Y.
Third, if E(Y) < E(X), we accept Y; otherwise, we reject Y. The
KNEAD procedure repeats the above three steps until 10
consecutive rejections appear.
Note that: (1) The high-energy atoms usually locate on the

surface of the cluster, because they have a smaller number of

nearest neighbors. By repeatedly moving the high-energy atoms to
the interior of the cluster, the atoms tend to squeeze together, and
the cluster becomes more uniform. (2) The perturbation operator
of moving several high-energy atoms to the interior of the cluster
was first introduced by Takeuchi with the name interior operator
(IO).23 It has become the main ingredient of some highly efficient
algorithms for global geometry optimization.10,23-26

The SMOOTH Procedure. The SMOOTH procedure aims
to improve a locally optimal configuration by moving a high-
energy atom to a vacant site on the surface of the cluster. To find
out the vacant sites on the surface of the cluster, we adopt the
same method proposed by previous researchers.8,23 We fix the N
atoms at their respective positions and place an additional probe
atom to a random place on the surface of the cluster. It is
observed in our computational experiments and previous re-
search that the atoms on the surface of the putative globalminima
are usually of type B. Therefore, we choose the probe atom to be
a type-B atom. Being attracted or repelled by the fixed atoms, the
probe atom will move from its initial position to a stable position.
The obtained stable position is then regarded as a vacant site, and
the energy of the probe atom is used to measure the degree of
vacancy; lower energy implies a more vacant site. By repeating
the above operations 2N times, we can find out almost all the
vacant sites on the surface of the cluster.
In the SMOOTH procedure, we focus only on the top s (s =

0.2� N) highest-energy atoms and the top t (t = 5) most vacant
sites. In the order of i = 1, 2, ...., s and j = 1, 2,...., t, we perturb the
current local minimumX bymoving the i-th highest-energy atom
to the j-th most vacant site. Then we locally optimize the
perturbed configuration and obtain a new local minimum Y. If
Y is better than X, then Y is accepted as the incumbent solution,
and the SMOOTH procedure is recursively used to further
optimize Y. Otherwise, if we have tried all s � t moves but
cannot find a better local minimum, then we terminate the
SMOOTH procedure.
Note that: (1) Through repeatedly moving a high-energy

atom to a vacant site, the surface of the cluster becomes
smoother. (2) The perturbation operator of moving the “worst”
atom to the ‘‘best” vacancy was first introduced by Northby7 and
has been adopted by many researchers for global geometry
optimization.6,8-10,13 (3) Prior to this work, the same technique
of moving the worst element to the best site has been used for
solving the packing equal circles in a square problem, producing
very impressive results.27

The FLIP Procedure. The FLIP procedure aims to improve a
locally optimal configuration by flipping the atom type of each
atom. In the order of i = 1, 2, ..., N, we perturb the current local
minimum X by flipping the atom type of atom i, i.e., changing its
atom type from A to B or B to A. Then we locally optimize the
perturbed configuration and obtain a new local minimum Y. If Y
is better than X, then X is replaced by Y, and we continue to flip
the next atom. The FLIP procedure terminates when each atom
has been flipped once.
Note that: (1) One may ask why not keep flipping the atoms

until we cannot obtain any improvement but only flip each atom
once? In fact, we have tested this stopping criterion. Using this
stopping criterion is significantly more time consuming, and the
benefit is unclear. (2) The method of finding a better solution
through iteratively flipping a variable has been widely used for
solving the satisfiability (SAT) problem.28

Main Scheme of the Algorithm. The main scheme of the
proposed 3OP algorithm is as follows:
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(1) Generate a random initial local minimum X by randomly
scatteringN atoms into a sphere of radius R = 0.7�N1/3,
randomly assigning atom type A or B to each atom and
locally optimizing the initial configuration.

(2) X r KNEAD (X).
(3) X r FLIP (X).
(4) X r SMOOTH (X).
(5) X r FLIP (X).
(6) If X is improved in step (5), then go to step (4).
Note that: (1)Using the described three operators, we build up a

complex neighborhood structure on the set of the local minima.
Thus, the 3OP algorithm can be regarded as a local search method
which starts from a randomly sampled local minimum and
iteratively moves from the current local minimum to a better
one. (2) There is much similarity between the proposed 3OP
algorithm and the monotonic sequence basin hopping (MSBH)
procedure proposed by Leary.5 They both start from an initial local
minimum and then iterativelymove to a better localminimum.The
main difference is that, in the MSBH algorithm, a locally optimal
configuration is perturbed by randomly shifting each atom a small
step, while in the 3OP algorithm, the perturbation of atoms is
usually guided by some heuristic information. (3) It is usually not
possible to locate the global minimum through one run of the 3OP
algorithm. In computational experiments, we run the 3OP algo-
rithm in amultistart fashion until the putative globalminimum(or a
new global minimum) has been found, or the elapsed CPU time
has exceeded a predefined limit.

’EXPERIMENTS

The proposed 3OP algorithm is programmed in Cþþ and
compiled using GNU GCC. To evaluate its performance, we
carry out 10 times of computational experiments. In each
experiment, the 3OP algorithm is used to solve all the 96 � 6
problem instances without special tuning of parameters. On each
problem instance, we run the 3OP algorithm in a multistart
fashion and stop the search once the putative global minimum
(or a new global minimum) has been found or the elapsed CPU
time has exceeded 24 h. It should be noted that the best-known
records used in this paper are contributed by Doye and Meyer,1

Wayne Pullan,19 Cassiolia et al.,20 Marques and Pereira,21Stefan
Goedecker,19 and Istvan Kolossvary.19 All experiments are done
on a Linux cluster with multiple 2.33GHZ Intel Xeon CPUs.
Though we have used up to 16 CPUs to solve all problem
instances, no parallel computation has been performed.
Computational Results. After 10 times of computational

experiments, we have found all the putative global minima except
for the following instances:
• σBB = 1.15, N = 59
• σBB = 1.20, N = 91, 93, 94, 99

• σBB = 1.25, N = 87, 91, 99, 100
• σBB = 1.30, N = 88, 89, 94, 97, 99, 100
Observing the configurations of the undetected putative global

minima, we find that most of them fall into two categories. For the
first category, there are several type-B atoms which appear
exceptionally in the interior of the cluster. These instances include
σBB = 1.20,N = 91, 99;σBB = 1.25,N= 87; andσBB = 1.30,N= 97.
Note that in most putative global minima, all type-B atoms locate
on the surface of the cluster and type-A atoms in the interior. We
therefore conjecture that it is the exceptional type-B atoms that
makes the corresponding putative globalminimumhard to detect.
For the second category, the shape of the cluster is oblate or
prolate. For example, the shape of the clusters for σBB = 1.30,N =
88, 89 is oblate, and the shape of the clusters for σBB = 1.25, N =
99, 100 and σBB = 1.30,N = 99,100 is prolate. The proposed 3OP
algorithm disfavors oblate or problate clusters, because the
KNEAD procedure tends to make the cluster spherical.
We also discover 12 new global minima missed in previous

research. Table 1 presents a comparison between the previously
best-known energy and the new energy that we find in this paper
for all these 12 instances. The coordinate files of all the 12 new
global minima have been sent toDavid J.Wales. They can now be
openly accessed from the Cambridge Cluster Database. Figure 1
shows the configuration of the previous putative optimum and
that of the new optimum for the instance of N = 79 and σBB =
1.20. The new configuration has lower energy and shows more
symmetry than the old configuration. Both configurations have
the same number of type-A and -B atoms.

Table 1. Comparison between the Previously Best-Known Energy and the New Energy

N σBB previous energy this work N σBB previous energy this work

78 1.10 -427.264722a -427.333481 78 1.20 -444.822988a -444.864069

79 1.10 -433.882967a -433.956776 79 1.20 -451.342508b -451.921407

73 1.15 -404.046888b -404.095588 81 1.20 -464.422970b -464.450846

83 1.15 -470.061091b -470.064073 88 1.20 -511.429454a -511.443323

76 1.20 -431.192388b -431.281456 89 1.20 -517.713603b -517.829589

77 1.20 -437.822083a -437.832462 68 1.30 -387.691297a -388.025204
a Found by Cassiolia et al.20 b Found by Doye and Meyer.1

Figure 1. Comparison between the previous putative optimum and the
new optimum for N = 79 and σBB = 1.20. The green balls denote the
type-B atoms and the red balls type-A atoms. The previous configuration
has energy -451.342508 and presents C1 symmetry, while the new
configuration has energy -451.921407 and presents C2v symmetry.
Both configurations have the same number of type-A and -B atoms (NA

= 27 and NB = 52).
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For the instances where the proposed 3OP algorithm can
locate the putative global minima, we present in Figure 2 the
detailed computational statistics, including the hit times of the
global minima and the average CPU time over these multiple
hits. From subfigures (a) and (b), one can observe that the first
two sets of instances are relatively easy to solve; the 3OP
algorithm can always locate all the putative global minimum
within 24 h. The other four sets of instances with N g 80 are
much more difficult; the 3OP algorithm can not always hit the
putative global minima within 24 h.
Comparing with Previous Works. We find in previous

literature that, prior to this work, there are only two groups
(Doye and Meyer and Cassiolia et al.) who have systematically
calculated all the instances in the BLJ benchmark system. Both of
them did not present detailed computational statistics. However,
the current best-known records reveal that Doye and Meyer1

have missed more than 100 putative optima and Cassiolia et al.20

have missed at least 29 putative optima. On the other hand, for
the proposed 3OP algorithm, all initial configurations are

randomly generated, and all parameters are kept constant for
all tested instances. While in their works, some initial configura-
tions are generated from lowest-energy structures of nearby N
and σBB, and their algorithms usually use more parameters than
the proposed 3OP algorithm.
Marques and Pereira21 have calculated all the instances in the

range of 5e Ne 50. They are able to find all the putative global
minima and one improved solution in this region. Compared with
their evolutionary algorithm, the 3OP algorithm can also find all
the current putative optima in this region. Moreover, one can
observe from Figure 2 that the CPU time for locating the putative
optima in this region is very short, in most cases less than 100 s.
Pullan, Goedecker, and Kolossvary also explored the BLJ

benchmark system and reported several improved solutions on
the CCD, respectively. We do not know about their methods and
the detailed computational results. However, they have missed at
least 12 new optima reported in Table 1.
Case Study. Due to the difficulty of the BLJ clusters problem

and the proposed 3OP algorithm, it is impossible to analyze the

Figure 2. Computational statistics on the successful instances where the putative optima can be located within 24 h. The red lines indicate the hit times
of the putative optima. The black lines denote the average CPU time over these multiple hits.
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3OP algorithm thoroughly at present. To demonstrate how the
3OP algorithm behaves, we present in Figure 3 a representative
search trajectory of the 3OP algorithm on the instance of N = 85
and σBB = 1.15. The horizontal axis indicates the elapsed CPU
time, and the vertical axis indicates the distance between the
energy of the current local minimum (E) and that of the putative
global minimum (Ebest = -483.671540). The number above
each dot denotes the number of the type-A atoms (NA) in the
current local minimum. At t = 0, the algorithm obtains a random
initial local minimum withΔE = E- Ebest = 46.726 andNA = 36.
After the KNEAD procedure (t ∈ [0,6]), the search reaches a
local minimum with ΔE = 39.562. Then, through the FLIP
procedure (t ∈ [6,14]), the search arrives at a local minimum
with ΔE = 15.913 and NA = 29. After that, the search performs
three cycles of SMOOTH and FLIP procedures and finally finds
the putative global minimum at t = 52. The computational test in
this section is done on a PC with a 1.8 GHZ AMD Athlon CPU
and 1G RAM.

’CONCLUSION

This paper proposes 3OP, a heuristic algorithm for global
optimization of BLJ clusters. The proposed algorithm makes
extensive use of three perturbation operators: moving several
high-energy atoms to the interior of the cluster, moving a high-
energy atom to a vacant site on the surface of the cluster, and
flipping the identity of each atom. Using these operators, the
algorithm can efficiently search both the configurational and
permutational spaces and detect the global minimum through a
sequence of local minimum with decreasing energy. The effec-
tiveness of the proposed 3OP algorithm has been shown by
computational experiments. Even though several groups have
searched the BLJ benchmark system using various methods, the
3OP algorithm can still find 12 better solutions than the best-
known ones recorded in the Cambridge Cluster Database.
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