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Mapping the magic numbers in binary Lennard-Jones clusters
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Using a global optimization approach that directly searches for the composition of greatest sta-
bility, we have been able to find the particularly stable structures for binary Lennard-Jones clusters
with up to 100 atoms for a range of Lennard-Jones parameters. In particular, we have shown that
just having atoms of different size leads to a remarkable stabilization of polytetrahedral structures,
including both polyicosahedral clusters and at larger sizes structures with disclination lines.

PACS numbers: 61.46.+w,36.40.Mr

The structure of binary clusters has been the subject
of much recent interest, both because of the technological
importance of alloy clusters, such as in catalysis, and the
opportunity to tailor the structure through the choice of
atom types and composition [1], potentially leading to
novel structural forms, such as the core-shell structures
recently found for silver alloy clusters [2]. Binary clusters
also offer considerable additional challenges to the theo-
retician, compared to the one-component case. Firstly,
for a given cluster, there are many more minima on the
potential energy surface, because of the presence of “ho-
motops” [3], isomers with the same geometric structure,
but which differ in the labelling of the atoms. Secondly,
the composition provides an additional variable that adds
to the complexity of the structural behaviour.

For example, the task of obtaining the lowest-energy
structures for all compositions and all sizes up to 100
atoms would require 5050 different global minima to be
found. Our approach here is different, as normally one
is not interested in all these possible structures, but only
the most stable. Therefore, in our global optimization
runs the composition is allowed to change, and so we at-
tempt to find the cluster at a given size with the optimal
composition directly. Thus, the task has been reduced
back down to finding one global minimum for each size, as
for the one-component case. Of course, the search space
for each optimization is extremely large, and so it is very
important to make extensive use of moves that change
the identity of atoms [4] in order to search the space
of homotops and different compositions as efficiently as
possible.

The focus of the current work is on how different struc-
tures, particularly those that are polytetrahedral [5], can
be stabilized just through the two atom types in the clus-
ter having different sizes [2]. In polytetrahedral struc-
tures all the occupied space can be divided up into tetra-
hedra with atoms at their corners. However, regular
tetrahedra cannot pack all space, and so polytetrahe-
dral packings are said to be frustrated. For example,
in the 13-atom icosahedron, which can be considered to
be made up of 20 tetrahedra sharing a common vertex,
the distance between adjacent atoms on the surface is
5.15% longer than that between the central atom and a
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FIG. 1: The energy of the BLJ global minimum for the six val-
ues of σBB/σAA studied, relative to ELJ

MI, a fit to the energies
of the Mackay icosahedra for LJ clusters. A line correspond-
ing to the LJ global minima is also included

surface atom. However, the associated strain can be re-
moved by choosing the central atoms to be 9.79% smaller
[6]. Similarly, Frank-Kasper phases, bulk polytetrahedral
crystals, are only found for alloys [7].

To achieve our aims we use a binary Lennard-Jones
(BLJ) potential:

E = 4
∑

i<j

(

σαβ

rij

)12

−

(

σαβ

rij

)6

, (1)

where α and β are the atom types of atoms i and
j, respectively. To study the effects of different atom
sizes, independent of energetic effects, we choose ǫAA =
ǫAB = ǫBB = ǫ and define σAB using the Lorentz rule:
σAB = (σAA + σBB)/2. The one parameter in the po-
tential is then σBB/σAA. For this choice of parameters
a tendency to form core-shell clusters has been observed
[8, 9], but no systematic structural survey has been made.
Our aim here is to find how the stable structures of the
BLJ clusters change, as σBB/σAA varies in the range 1.0
to 1.3 for all clusters with up to 100 atoms.

The energies of the putative global minima that we
have found are depicted in Figures 1 and 2, where Fig. 1
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FIG. 2: The six panels correspond to the energy of the global
minimum for the six values of σBB/σAA studied, relative to
Eave, a fit to the energies of the global minima at that size
ratio.

compares the energies at different values of σBB/σAA and
Fig. 2 allows the magic numbers at each size ratio to be
identified more easily. Figure 3 provides a more detailed
analysis of the behaviour of BLJ13, Figure 4 shows a
selection of particularly stable structures and Figure 5
how the structural form of the global minima depends
on N and σBB/σAA. The energies and points files for all
the global minima are available online [10].

The reference system to which our results are com-
pared is the one-component Lennard-Jones (LJ) clusters,
for which the structural behaviour is well-understood. In
the present size range, the LJ global minima are domi-
nated by structures based upon the Mackay icosahedra
[11]. These Mackay icosahedra are made up of twenty
face-centred-cubic (fcc) tetrahedra sharing a common
vertex, and except for the smallest icosahedron at N = 13
are not polytetrahedral.
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FIG. 3: (Colour online) The dependence of the energies of
the four BLJ13 global minima on σBB/σAA.

Growth upon the Mackay icosahedra can occur in two
ways. The first, the anti-Mackay overlayer, consists in
adding atoms in sites that are hexagonal close-packed
with respect to the underlying fcc tetrahedra and above
the twelve vertices. For the 13-atom icosahedron, this
overlayer maintains the polytetrahedral character of the
clusters. The second, the Mackay overlayer continues
the fcc packing of the underlying tetrahedra and leads to
the next Mackay icosahedron. Growth initially occurs in
the anti-Mackay overlayer because of a greater number
of nearest-neighbour contacts, but before this overlayer
is complete, the LJ global minimum changes to Mackay
character [11], because of the greater strain energy asso-
ciated with the anti-Mackay overlayer.

It is immediately clear from Fig. 1 that allowing atoms
of different sizes leads to a dramatic stabilization of the
clusters. For example, the BLJ45 global minimum at
σBB/σAA=1.3 is 26.9 ǫ or 12.6% lower in energy than
that for LJ45. The origins of this stabilization are quickly
apparent from an analysis of the structural behaviour of
the BLJ clusters. The structural phase diagram in Fig. 5
shows that for the majority of the parameter space, the
global minima are polytetrahedral. Only in the bottom
right-hand corner (large N and low size ratio) are non-
polytetrahedral structures most stable. For LJ clusters,
such polytetrahedral structures are disfavoured beyond
30 atoms because of their greater strain energy, how-
ever the presence of different-sized atoms relieves this
strain. As the polytetrahedral structures generally have
a greater number of nearest neighbours, they therefore
become lowest in energy.

Perhaps surprisingly, there is no optimal size ratio, but
instead the energy virtually monotonically decreases with
increasing σBB/σAA (Fig. 1). For example, based on the
analysis of the geometry of the icosahedron mentioned
earlier, one might expect a size difference near 10% to be
optimal for BLJ13. Indeed, the energy of A1B12 shows
a pronounced minimum near this value (Fig. 3), how-
ever just beyond this minimum the optimal structure
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FIG. 4: (Colour online) A selection of the particularly stable BLJ global minima grouped according to their structural type: (a)
polyicosahedral, (b) polytetrahedral with disclinations and (c) the 55-atom Mackay icosahedron with an anti-Mackay overlayer.
For the larger clusters, to the right of the cluster, the A-atom core is also depicted, and in (b) to the left is the disclination
network.

changes. The low energy is maintained by adding an in-
creasing number of the smaller A atoms into the surface
of the icosahedron, as this keeps the nearest-neighbour
distances near to their optimal values. A similar story
holds for larger clusters, except that the optimal values
of σBB/σAA for the core-shell geometry are larger (Fig.
5) because greater size ratios are needed to fully relieve
the strain.

This preference for polytetrahedral structures is ev-
ident in the magic numbers (Fig. 2). Only for
σBB/σAA=1.05 is the 55-atom Mackay icosahedron still
a magic number. Instead the magic numbers at N=19,
23, 26, 29, 34, and 45 associated with the covering of
the 13-atom icosahedron by the anti-Mackay overlayer
become increasingly prominent. These structures are
polyicosahedral—each atom in the interior of the cluster
has a local icosahedral coordination shell—and are made
up of 2, 3, 4, 5, 7 and 13 interpenetrating icosahedra,
respectively (Fig. 4). Recently, similar polyicosahedral
core-shell structures have been found for alloy clusters
of silver [2]. Although a significant proportion of the
polyicosahedral region of the structural phase diagram
corresponds to core-shell clusters (Fig. 5), the stability
of these structures is not dependent on such an arrange-
ment, and as for BLJ13, A atoms are incorporated into
the surface at larger σBB/σAA, as illustrated by A7B12

and A12B22 in Fig. 4.

The complete anti-Mackay covering of the 13-atom
icosahedron occurs at N=45, however at larger size ra-
tios the polyicosahedral growth continues beyonds this
size. The magic numbers at N=56, 62 and 66 correspond
to core-shell polyicosahedral structures with the double,
triple and quadruple icosahedra mentioned above as their
core (Fig. 4).

As N increases the polyicosahedral structures have in-
creasingly large tensile strains in the surface, hence the
need for increasingly large size ratios to counteract this.
Furthermore, polyicosahedral structures are impossible
for bulk. Instead, the Frank-Kasper phases also involve
coordination numbers greater than 12. Such structures
can be described using disclinations, where a disclina-
tion runs along those edges in the structure that have six
tetrahedra surrounding them, rather than the usual five
for icosahedral coordination [5]. Polytetrahedral clusters
involving disclinations introduce both tensions and com-
pressions into the structure, and represent a better com-
promise at larger N . Indeed, such structures cover a
significant proportion of the phase diagram at larger N
(Fig. 5), and some examples are illustrated in Fig. 4.

Unlike the polyicosahedral structures, the core of the
cluster is not necessarily made up completely of A atoms,
but instead the atoms with coordination number (Z)
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FIG. 5: (Colour online) Structural phase diagram showing
how the structure of the global minimum depends on N and
σBB/σAA. Each point corresponds to the value of σBB/σAA

at which the global minimum for a given N changes. The lines
divide the diagram into regions where the global minima have
the same structural type. The labels I13 and I55 stand for the
13- and 55-atom Mackay icosahedra.

greater than 12 usually correspond to the larger B atoms.
Atoms with Z=14 have a single disclination running
through them, whilst atoms with Z=15 and 16 are nodes
for three and four disclinations, respectively.

Some of the polytetrahedral magic numbers at
σBB/σAA = 1.1 have been previously seen for one-
component clusters interacting with long-ranged Morse
[12] and modified Dzugutov [13] potentials. The struc-
tures at N=51, 54 and 61 consist of the Z=14, 15
and 16 coordination polyhedron, respectively, covered by
a (near-)complete anti-Mackay-like overlayer. As such,
they are the high coordination number analogues of
A13B32. Similarly, A18B64 is the analogue of A19B37, but
with two interpenetrating Z=16 coordination polyhedra
at the centre.

As σBB/σAA increases, the fraction of the atoms that
lie on disclination lines decreases, reaching zero at the
polyicosahedral boundary in the structural phase dia-
gram. This trend is illustrated by the four structures in
the second line of Fig. 4(b), which correspond to magic
numbers for σBB/σAA=1.15, 1.2, 1.25 and 1.3, respec-
tively. For example, the hexagonal disk structure that
occurs for σBB/σAA=1.3 at N=88, has a single discli-
nation running along the six-fold symmetry axis, and its
A-atom core is a 38-atom structure previously seen for
Dzugutov clusters [13, 14].

The major non-polytetrahedral portion of the struc-
tural phase diagram corresponds to structures based on
the 55-atom Mackay icosahedron. As for growth on the
13-atom icosahedron, the size at which the transition
from an anti-Mackay to a Mackay overlayer occurs in-
creases with increasing σBB/σAA. At σBB/σAA=1.05,
this transition does not occur in the present size range,

even though it begins at N=82 for LJ clusters. Fig.
4(c) illustrates some of the magic numbers with an anti-
Mackay overlayer that occur for σBB/σAA=1.05 and 1.1,
all of which have a core-shell geometry.

In summary, we have developed a global optimiza-
tion approach for binary clusters that is able to locate
magic number clusters up to unprecedented sizes, and
which should also prove particularly useful for analysing
bimetallic clusters. We have applied this approach to
binary Lennard-Jones clusters, our hope being that,
in the same way as for Lennard-Jones clusters in the
one-component case, this system will become a simple
archetypal system both to provide candidate structures
for a wide variety of binary clusters and to rationalize
their structures. Here, we focussed on the case where
only the sizes of the two atom types are different. This
leads to a remarkable stabilization of polytetrahedral
clusters, and a zoo of interesting structures. Because
clusters have been found to provide a good indicator of
the preferred local structure within supercooled liquids
[14, 15], these results can also provide an interesting per-
spective on the role of size mismatch on glass formation
in binary systems. Not only does size mismatch enhance
glass formation due to the destabilization of a crystalline
solid solution [16], but we see here that it also encour-
ages local icosahedral coordination [17], hence frustrating
crystallization further.
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