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Abstract: A natural river often finds good paths among lots of possible paths in its ways from 
the source to destination. These near optimal or optimal paths are obtained by the actions and 
reactions that occur among the water drops and the water drops with the riverbeds. The intelligent 
water drops (IWD) algorithm is a new swarm-based optimisation algorithm inspired from 
observing natural water drops that flow in rivers. In this paper, the IWD algorithm is tested to 
find solutions of the n-queen puzzle with a simple local heuristic. The travelling salesman 
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1 Introduction 

The natural systems that have developed for so long are one 
of the rich sources of inspiration for inventing new 
intelligent systems. Swarm intelligence is one of the 
scientific fields that are closely related to natural swarms 
existing in nature, such as ant colonies, bee colonies, brain 
and rivers. Among the problem solving techniques inspired 
from nature are evolutionary computation (Eiben and Smith, 
2003), neural networks (Haykin, 1999), time adaptive  
self-organising maps (Shah-Hosseini, 2006), ant colony 
optimisation (Dorigo and Stutzle, 2004), bee colony 
optimisation (Sato and Hagiwara, 1997), particle swarm 
optimization (Eberhart and Kennedy, 1995), DNA 
computing (Adleman, 1994), electromagnetism-like 
optimisation (Birbil and Fang, 2003) and intelligent water 
drops (Shah-Hosseini, 2007). 

One of the recently proposed algorithms in the field of 
the swarm intelligence is the intelligent water drops (IWDs) 
algorithm (Shah-Hosseini, 2007; Shah-Hosseini, 2008). The 
IWD algorithm is based on the dynamic of river systems, 
actions and reactions that happen among the water drops in 

rivers. The natural water drops are used to develop IWD and 
the IWDs cooperate together to reach a better solution for a 
given problem. The IWD algorithm may be used for 
maximisation or minimisation problems. The solutions are 
incrementally constructed by the IWD algorithm. Therefore, 
the IWD algorithm is a population-based constructive 
optimisation algorithm. 

The IWD algorithm has been used for the travelling 
salesman’s problem (TSP) (Shah-Hosseini, 2007) and 
multiple (or multidimensional) knapsack problem (MKP) 
(Shah-Hosseini, 2008) with promising results. Both the TSP 
and the MKP are NP-hard combinatorial optimisation 
problems. In the TSP, a map of cities is given to the 
salesman and he has to visit all the cities only once to 
complete a tour such that the length of the tour is the 
shortest among all possible tours for this map. In the MKP, 
there are multiple knapsacks and several items and the goal 
is to include some of the items in the knapsacks to achieve 
maximum profit with the constraint that none of the 
knapsacks becomes overflowed. Both the TSP and MKP are 
often used for testing optimisation algorithms. In this paper, 
the IWD-TSP algorithm (Shah-Hosseini, 2007) is modified 
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to get better results for the TSPs. Moreover, the IWD-MKP 
algorithm (Shah-Hosseini, 2008) is used for some other 
MKPs to observe its power for getting optimal or  
near-optimal solutions. 

The n-queen problem, an NP-complete problem, is also 
used here to test the performance of the IWD algorithm. The 
IWD algorithm that is used for solving the n-queen is called 
the ‘IWD-NQ’ algorithm. The n-queen puzzle (problem) 
needs to place n queens on a chessboard of size n × n such 
that no two queens attack each other. Therefore, the goal is 
to obtain the global optimal solution and no near-optimal 
solution is acceptable. 

The next section reviews some processes that occur in a 
river, which involves the water drops of the river and 
explains IWDs that have been developed based on the ideas 
of natural water drops. Section 3 introduces the IWD 
algorithm, which uses IWDs for problem solving. Section 4 
shows how to use the IWD algorithm for solving three 
different optimisation problems. Experimental results with 
the proposed IWD algorithm for artificial and standard 
TSPs, MKPs, and n-queen problems form Section 5. 
Concluding remarks are the final section of the paper. 

2 Basics of the IWDs 

By looking at rivers in nature, we are surprised to see lots of 
twists and turns along their paths. One thing that makes us 
think is that why these twists have been created and is there 
any logic or intelligence behind them? And if that is so, can 
we use the mechanisms that happen in rivers and as a result, 
can we design and develop intelligent algorithms based on 
them? The IWD algorithm is a step in the direction to model 
a few actions that happen in natural rivers and then to 
implement them in a form of an algorithm. 

In the IWD algorithm, IWDs are created with two main 
properties: 

• velocity 

• soil. 

Both of the two properties may change during the lifetime 
of an IWD. An IWD flows from a source to a destination. 
The IWD begins its trip with an initial velocity and zero 
soil. During its trip, it travels in the environment from which 
it removes some soil and it may gain some speed. An IWD 
is supposed to flow in discrete steps. From its current 
location to its next location, the IWD velocity is increased 
by the amount non-linearly proportional to the inverse of the 
soil between the two locations. Therefore, a path with less 
soil lets the IWD become faster than a path with more soil. 

An IWD gathers soil during its trip in the environment. 
This soil is removed from the path joining the two locations. 
The amount of soil added to the IWD is non-linearly 
proportional to the inverse of the time needed for the IWD 
to pass from its current location to the next location. This 
time interval is calculated by the simple laws of physics for 
linear motion. Thus, the time taken is proportional to the 
velocity of the IWD and inversely proportional to the 

distance between the two locations. Moreover, those parts of 
the environment that are used with more IWDs will have 
less soil. It may be said that soil is the source material of 
information such that the environment and water drops both 
have memories for soil. 

An IWD needs a mechanism to select the path to its next 
location or step. In this mechanism, the IWD prefers the 
paths having low soils to the paths having high soils. This 
behaviour of path selection is implemented by imposing a 
uniform random distribution on the soils of the available 
paths. Then, the probability of the next path to select is 
inversely proportional to the soils of the available paths. 
Therefore, paths with lower soils have higher chance to be 
selected by the IWD. 

3 The IWD algorithm 

The IWD algorithm gets a representation of the problem in 
the form of a graph (N, E) with the node set N and edge set 
E. Then, each IWD begins constructing its solution 
gradually by travelling on the nodes of the graph along the 
edges of the graph until the IWD finally completes its 
solution. One iteration of the algorithm is complete when all 
IWDs have completed their solutions. After each iteration, 
the iteration-best solution TIB is found and it is used to 
update the total-best solution TTB. The amount of soil on the 
edges of the iteration-best solution TIB is reduced based on 
the goodness (quality) of the solution. Then, the algorithm 
begins another iteration with new IWDs but with the same 
soils on the paths of the graph and the whole process is 
repeated. The algorithm stops when it reaches the maximum 
number of iterations itermax or the total-best solution TTB 
reaches the expected quality. 

The IWD algorithm has two kinds of parameters. One 
kind is those that remain constant during the lifetime of the 
algorithm and they are called ‘static parameters’. The other 
kind is those parameters of the algorithm, which are 
dynamic and they are reinitialised after each iteration of the 
algorithm. It should be reminded that the values chosen for 
the static parameters of the IWD algorithm are the same 
used in Shah-Hosseini (2008) until specified otherwise. 

The IWD algorithm is specified in the following steps: 

1 Initialisation of static parameters. The graph (N, E) of 
the problem is given to the algorithm. The quality of the 
total-best solution TTB is initially set to the worst value: 

( )TBq T = −∞ . The maximum number of iterations 
itermax is specified by the user. The iteration count 
itercount is set to zero. 

 The number of water drops NIWD is set to a positive 
integer value, which is usually set to the number of 
nodes Nc of the graph. 

 For velocity updating, the parameters are 1va = , 
.01vb =  and 1vc = . For soil updating, 1sa = , .01sb =  

and 1sc = . The local soil updating parameter nρ , 
which is a small positive number less than one, is set as 
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0.9nρ = . The global soil updating parameter IWDρ , 
which is chosen from [0, 1], is set as 0.9IWDρ = . 
Moreover, the initial soil on each path (edge) is denoted 
by the constant InitSoil such that the soil of the path 
between every two nodes i and j is set by 

( , )soil i j InitSoil= . The initial velocity of each IWD is 
set to InitVel. Both parameters InitSoil and InitVel are 
user selected and they should be tuned experimentally 
for the application. Here, InitSoil = 10000 and  
InitVel = 200. For the IWD-MKP, InitVel = 4 is used, 
which is the same value used in Shah-Hosseini (2008). 

2 Initialisation of dynamic parameters. Every IWD has a 
visited node list ( )cV IWD , which is initially empty: 

{ }( )cV IWD = . Each IWD’s velocity is set to InitVel. 
All IWDs are set to have zero amount of soil. 

3 Spread the IWDs randomly on the nodes of the graph as 
their first visited nodes. 

4 Update the visited node list of each IWD to include the 
nodes just visited. 

5 Repeat Steps 5.1 to 5.4 for those IWDs with partial 
solutions. 

5.1 For the IWD residing in node i, choose the next 
node j, which does not violate any constraints of 
the problem and is not in the visited node list 

( )vc IWD  of the IWD, using the following 

probability ( )IWD
ip j : 

( )
( )

( )

( , )
( )

( , )
IWD
i

k vc IWD

f soil i j
p j

f soil i k
∉

=
∑

 (1) 

 such that 

 1( ( , ))
( ( , ))s

f soil i j
g soil i jε

=
+

 and 

vc(IWD)

( )

( , )        min ( ( , )) 0
( ( , ))

( , ) min ( ( , ))        
l

l vc IWD

soil i j  if soil i l
g soil i j

soil i j soil i l else
∉

∉

≥⎧
⎪= ⎨ −⎪⎩

Then, add the newly visited node j to the list 
( )vc IWD . 

5.2 For each IWD moving from node i to node j, 
update its velocity ( )IWDvel t  by 

2( 1) ( )
 . ( , )

IWD IWD v

v v

a
vel t vel t

b c soil i j
+ = +

+
 (2) 

 where ( 1)IWDvel t +  is the updated velocity of 
the IWD. 

5.3 For the IWD moving on the path from node i to 
j, compute the soil ( , )soil i jΔ  that the IWD 
loads from the path by 

( )2
( , )

.  , ; ( 1)
s

IWD
s s

a
soil i j

b c time i j vel t
Δ =

+ +
 (3) 

 such that 

( ) ( ) , ; ( 1)
( 1)

IWD
IWD

HUD jtime i j vel t
vel t

+ =
+

 where 

the heuristic undesirability HUD(j) is defined 
appropriately for the given problem. 

5.4 Update the soil ( , )soil i j  of the path from node 
i to j traversed by that IWD and also update the 
soil that the IWD carries IWDsoil  by 

( , ) (1 ) . ( , )  . ( , )

( , )
n n

IWD IWD

soil i j soil i j soil i j

soil soil soil i j

= −ρ −ρ Δ

= +Δ
 (4) 

6 Find the iteration-best solution TIB from all the 
solutions TIWD found by the IWDs using 

arg max ( )
IWD

IB IWD

T
T q T

∀
=  (5) 

 where function (.)q  gives the quality of the solution. 

7 Update the soils on the paths that form the current 
iteration-best solution TIB by 

IWD( , )  (1 ) . ( , )
1 .    .      ( , )

( -1)
IWD IB

IWD IB
IB

soil i j soil i j

soil i j T
N

ρ

ρ

= +

− ∀ ∈
 (6) 

 where IBN  is the number of nodes in the solution TIB. 

8 Update the total best solution TTB by the current 
iteration-best solution TIB using 

         ( )    ( )

                            

TB TB IB
TB

IB

T if q T q T
T

T otherwise

⎧ ≥⎪= ⎨
⎪⎩

 (7) 

9 Increment the iteration number by 
1count countIter Iter= + . Then, go to Step 2 if 

maxcountIter Iter< . 

10 The algorithm stops here with the total-best solution 
TTB. 

It is reminded that the IWD has been shown to have the 
property of convergence in value (Shah-Hosseini, 2008). It 
means that the IWD algorithm is able to find the optimal 
solution if the number of iterations be sufficiently large. 

The IWD algorithm may be compared to the ant-based 
optimisation algorithms (Bonabeau et al., 1999). The ants in 
an ant colony optimisation algorithm deposit pheromones 
on the paths they move on. The IWDs change soil on the 
paths they flow over. However, in contrast to the ants, these 
changes are not constant and are dependent on the velocity 
and soil of the IWD visiting the paths. Moreover, the IWDs 
may gain different velocities throughout an iteration of the 
IWD algorithm whereas in ant-based algorithms the 
velocities of the ants are irrelevant to the algorithm. 
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4 Solving problems by the IWD algorithm 

The IWD algorithm may be used to solve optimisation 
problems. An IWD in the algorithm both searches and 
changes the environment of the given problem. By doing 
that, the IWD constructs incrementally a solution to the 
problem. The problem should be presented to the IWD 
algorithm in the form of a graph and the IWDs actually go 
node to node on the links of the graph. A swarm of IWDs 
flows in the graph with the guidance of a local heuristic in 
the hope of finding optimal or near optimal solutions. In the 
following, three different problems are stated and then it is 
shown how to use the IWD algorithm for solving them. 

4.1 The travelling salesman’s problem 

In this subsection, we specifically express the steps for 
solving the travelling salesman problem or the TSP. Then, a 
modification to the IWD-TSP in Shah-Hosseini (2007) is 
proposed. In the TSP, a map of cities is given to the 
salesman and he is required to visit the entire cities one after 
the other to complete his tour such that in this tour every 
city is visited only once except the first city of the tour 
which is visited twice to form a round trip (tour). The goal 
in the TSP is to find the tour with the minimum total length 
among all such possible tours, which are obtainable for the 
given map. 

A TSP is represented by a graph (N, E) where the node 
set N denotes the n cities of the TSP and the edge set E 
denotes the paths between each two cities. In this paper, the 
graph of the TSP is considered a complete graph. Therefore, 
every city has a direct path to another city. Here, it is 
assumed that the direct path between each two cities is an 
undirected path. So, in summary, the graph of the TSP is a 
complete undirected graph. A solution of the TSP having 
the graph (N, E) is then an ordered set of n distinct cities. 

A TSP solution for an n-city problem may be 
represented by the tour ( )1 2, ,..., nT c c c= . The salesman 
travels from city c1 to c2, then from c2 to c3 and he continues 
this way until it gets to city cn. He then returns to the first 
city c1. The tour length, (.)TL  is calculated by 

( ) ( )1 2 1
1

  , ,...,   ,
n

n i i
i

TL c c c d c c +
=

= ∑  (8) 

such that 1 1nc c+ =  and the distance function (.,.)d  which 
computes the distance between two cities is often selected 
as the Euclidean distance. The goal of any optimisation 
algorithm for the TSP is to find the tour ( )* * *

1 2* , ,..., nT c c c=  

with the minimum length among all possible tours: 

1 2

1 2

 ( *)  ( , ,..., )      
    ( , ,..., )

n

n

TL T TL c c c
for every tour c c c

≤
 (9) 

where  (.)TL  returns the total length of the given tour. The 
tour *T  is called the global optimum tour. 

In order to use the IWD algorithm for the TSP, the TSP 
problem as mentioned above is viewed as a complete 

undirected graph (N, E). Each link of the edge set E has an 
amount of soil. An IWD can travel between nodes of the 
graph through these links and is able to change the amount 
of the soils on the links. Moreover, cities of the TSP are 
denoted by nodes of the graph, which hold the physical 
positions of cities. An IWD starts its tour from a random 
node and it visits other nodes using the links of the graph 
until it returns to the first node. The IWD changes the soil of 
each link that it flows on while completing its tour. 

For the TSP, the constraint that each IWD never visits a 
city twice in its tour must be kept satisfied. Therefore, for 
the IWD, a visited city list ( )cV IWD  is employed. This list 
includes the cities visited so far by the IWD. So, the next 
possible cities for an IWD are selected from those cities that 
are not in the visited list ( )cV IWD  of the IWD. 

The local heuristic for the TSP, denoted by 
( ,  )TSPHUD i j , has been suggested as follows: 

( , )  ( ) ( ) TSPHUD i j i j= −c c  (10) 

where ( )kc  denotes the two dimensional positional vector 
for the city k. The function  .  denotes the Euclidean 
norm. The local heuristic ( ,  )TSPHUD i j  measures the 
undesirability of an IWD to move from city i to city j. For 
near cities i and j, the heuristic measure ( ,  )HUD i j  
becomes small whereas for far cities i and j, the measure 

( ,  )HUD i j  becomes big. The time, which is taken for the 
IWD to pass from city i to city j, is proportional to the 
heuristic ( ,  )TSPHUD i j . 

A modification to the IWD-TSP is proposed here to get 
better tours and hopefully escape local optimums. After 
every constant number of iterations, IN , the soils of all 
paths of the graph problem are reinitialised again such that 
the paths of the total-best solution TTB are given less soil 
than the other paths: 

         ( , )( , )
                               

TB
I I InitSoil for every i j Tsoil i j

InitSoil otherwise
α⎧ Γ ∈⎪= ⎨
⎪⎩

 (11) 

where Iα  is a small positive number chosen here as 0.1. IΓ  
denotes a random number, which is drawn from a uniform 
distribution in the interval [0, 1]. As a result, IWDs prefer to 
choose paths of TTB because less soil on its paths is 
deposited. 

4.2 The n-queen problem 

The 8-queen puzzle is the problem of putting eight chess 
queens on an 8 × 8 chessboard such that no two queens are 
able to attack each other. Thus, a solution requires that no 
two queens occupy the same row, column, or diagonal. The 
8-queen puzzle can be generalised to the n-queen puzzle in 
which n queens must be placed on an n × n chessboard such 
that no two queens attack each other (Watkins, 2004). The 
solution exists for 1n =  and 4n ≥ . 



 The intelligent water drops algorithm: a nature-inspired swarm-based optimisation algorithm 75 

One strategy to reduce the huge search space 64n in the 
n-queen problem is to place the n queens one by one on the 
chessboard such that the first queen is placed on any row of 
the first column. Then, the second queen is placed on any 
row of the second column except the row of the first queen. 
Following this strategy, the ith queen is placed on any row 
of the ith column except those rows that previous queens 
have occupied. This incremental strategy of putting queens 
on the chessboard reduces the search space to n! where the 
symbol ‘!’ denotes the factorial. 

In the incremental strategy, if every row of the 
chessboard is considered a city, then the n-queen problem 
may be considered as a TSP. The first row chosen by the 
first queen is considered the first city of the tour. The 
second row chosen by the second queen is called the second 
city of the tour. Continuing this way, the ith row chosen by 
the ith queen is considered the ith city of the tour. The 
constraint that no two queens are in the same row is viewed 
as no two cities of the TSP graph are visited by the 
salesman. In summary, for the n-queen problem, a complete 
undirected TSP graph is created. 

In the n-queen problem, any feasible solution is also the 
optimal solution because any feasible solution for an  
n-queen problem is the solution in which no two queens 
attack each other and that is the desired solution. For this 
problem, only the final positions of queens on the 
chessboard are desired to be found while the path to reach 
the final feasible (optimal) solution(s) is not wanted. 

For an IWD to solve the n-queen problem, the local 
heuristic undesirability ( ,  )NQHUD i j , which is used in the 

IWD algorithm, is proposed as follows: 

( , ) (1 )     
2NQ
nHUD i j r i j= + − −  (12) 

where ( ,  )NQHUD i j  is the undesirability of an IWD to go 

from current row (city) i to the next row (city) j. The 
variable r is a random number chosen uniformly from the 
interval [0, 1]. The symbol n denotes the number of cities 
(columns or rows) of the chessboard of size n × n. The 
heuristic of equation (12) favours the distance between the 
rows of neighbouring columns to be near the length n/2. 

For the n-queen problem, it is observed experimentally 
that the IWD algorithm with the proposed local heuristic is 
usually trapped in the local optima in which only two 
queens attack each other. Sometimes, coming out of such 
local optima takes considerable iterations of the algorithm. 
Using a good local search algorithm may help to come out 
of such local optima faster. In this regard, a simple local 
search algorithm is proposed. This local search algorithm 
called ‘n-queen local search’ or NQLS is activated only 
when the iteration-best solution of the IWD algorithm 
contains only two queens attacking each other. 

For the n-queen problem, the quality of a solution T is 
given by 

1

1 1
( ) ( , )

n n

i j
i j i

q T attack c c
−

= = +
= −∑ ∑  (13) 

such that 

1             
( , )

0                                                
i j

i j
if c and c attack each other

attack c c
else

⎧⎪= ⎨
⎪⎩

 (14) 

The optimal solution T* has the quality value zero: 
( *) 0q T = . It is hoped that the total-best iteration TTB 

reaches the quality zero. As a result, the proposed NQLS 
algorithm is activated when the quality of the iteration-best 
solution TTB becomes –1. 

In the following, the proposed NQLS is expressed in 
four steps: 

1 Get the iteration-best solution with tour 

( )1 2, ,...,IB IB IB IB
nT c c c= with the quality ( ) 1IBq T = − . 

2 Set 0
IBT T= . 

 For k=1, 2, …, n–1 do the following steps (Steps 2.1 to 
2.3): 

2.1 Shift the cities in the tour one position to the 
right such that the last city becomes the first city 
in the tour: 1( )

Rightk kT shift T −= . 

2.2 if ( ) 0kq T = , then set 0 kT T=  and jump to Step 
4. 

2.3 End loop. 

3 For k=1, 2, …, n–1 do the following steps (Steps 3.1 to 
3.3): 

3.1 Increment each city’s number (row) by one such 
that the highest row becomes the lowest row in 
the chessboard: 1( ) modk kT T k n−= + , where 
mod is the modulus function. Moreover, the 
increment inside the parenthesis is applied to 
each city of the tour 1kT − . 

3.2 If ( ) 0kq T = , then set 0 kT T=  and jump to Step 
4. 

3.3 End loop. 

4 If 0( ) 0q T = , then the total-best iteration solution TTB 
has been obtained and is updated by TTB = T0; 
otherwise, no updating is implemented by this 
algorithm. 

The IWD algorithm for the n-queen problem is called 
‘IWD-NQ’ algorithm. The proposed IWD-NQ algorithm 
uses the standard IWD algorithm mentioned in Section 3 
with the local heuristic ( ,  )NQHUD i j  defined in equation 

(12) and the local search algorithm NQLS, which has been 
proposed above. 

4.3 The multiple knapsack problem 

The knapsack problem or KP (Kellerer et al., 2004) is to 
select a subset of items i of the set I each item i with the 
profit ib  and resource (capacity) requirement ir  such that 
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they all fit in a knapsack of limited capacity and the sum of 
profits of the selected items is maximised. 

The multiple or multidimensional knapsack problem, 
MKP, is a generalisation of the KP. In the MKP, there exists 
multiple knapsacks and thus there are multiple resource 
constraints. The inclusion of an item i in the m knapsacks is 
denoted by setting the variable iy  to one, otherwise iy  is 
set to zero. Let the variable ijr  represents the resource 

requirement of an item i with respect to the resource 
constraint (knapsack) j having the capacity ja . In other 

words, ijr  represents the amount of capacity that item i 

requires from knapsack j. The MKP with m constraints 
(knapsacks) and n items wants to maximise the total profit 
of including a subset of the n items in the knapsacks without 
surpassing the capacities of the knapsacks. For the MKP, in 
more specific terms: 

1
max

n

i i
i

y b
=
∑  (15) 

subject to the following constraints: 

1
  1, 2,...,

n

ij i j
i

r y a for j m
=

≤ =∑ . (16) 

where { } 0,1 iy ∈  for  1, 2,...,i n= . Here, the profits ib  
and the resources requirements ijr  are non-negative values. 

To solve the MKP using the IWD algorithm, the search 
space of the problem is viewed as a graph (N, E) where the 
node set N denotes the items of the MKP and the edge set E 
denotes the arcs (paths) between the items (nodes). A 
feasible solution is a set of N ′  items such that they do not 
violate the constraints in equation (16) and N N′ ⊆ . For the 
MKP, the optimal solution is also a feasible solution and it 
is composed of a subset of n items, which maximises the 
profit defined in equation (15). Therefore, the order of 
selecting items in the solution of the MKP is not important 
and not all items may be included in the solution. 

The heuristic undesirability ( )MKPHUD j  that has been 
used in the IWD-MKP algorithm (Shah-Hosseini, 2008) is 
defined as follows: 

A simple local heuristic is used which reflects the 
undesirability of adding an item to the current partial 
solution. Let the ( )MKPHUD j  for the MKP be defined as 

1

1( )
m

MKP jk
j k

HUD j r
mb =

= ∑ . (17) 

Where jb  denotes the profit of item j and jkr  is the 

resource requirement for item j from knapsack k. Equation 
(17) shows that ( )MKPHUD j  decreases if the profit jb  is 

high whereas ( )MKPHUD j  increases if the resource 
requirements of item j are high. As a result, the items with 
less resource requirements and higher profits are more 
desirable. ( )MKPHUD j  represents how undesirable is the 

action of selecting item j as the next item to be included in 
the knapsacks. 

The IWD-MKP algorithm uses the standard IWD 
algorithm mentioned in Section 3 and the local heuristic 

( )MKPHUD j  defined in equation (17) to solve the MKP. 

5 Experimental results 

The IWD algorithm is used for three different problems:  
n-queen puzzle, the TSP and the MKP. The first set of 
experiments is used to test the capabilities of the proposed 
IWD-NQ algorithm introduced in Section 4.2 for the  
n-queen puzzle. The IWD-NQ has a simple heuristic and a 
plain local search algorithm to escape from local optimums. 
The IWD-NQ is tested with ten different n-queens puzzle 
where n is increased from ten to 100 by increments of ten. 
The average number of iterations for the ten runs of each  
n-queen puzzle is depicted in Figure 1. In these 
experiments, the number of IWDs is kept constant with 50 
IWDs. 

Figure 1 The average number of iterations to get to the global 
optimal solution versus the number of queens for the  
n-queen puzzle (see online version for colours) 

 
Note: The results shown here are the average iterations 

of ten runs of the proposed IWD-NQ algorithm 

It is seen that the number of iterations to get to the optimal 
solution(s) does not depend necessarily to the number of 
queens. For example, the average number of iterations for 
the 90-queen problem is bigger than the 100-queen problem. 
One reason is that getting out of the local optimal solution 
for the case with 90 queens is more difficult than the case 
with 100. In other words, the proposed local heuristic of 
equation (12) works better for some number of queens than 
the others. 

For the aforementioned experiments, the lowest 
numbers of iterations in ten runs of the IWD-NQ algorithm 
are shown in Figure 2. In this figure, the number of 
iterations increases as the number of queens is increased. 
Therefore, the results for best performance (lowest 
iterations) in ten runs depend on the number of queens and 
often increase with increase in the number of queens. 

The IWD-NQ algorithm is tested with the 200-queens 
problem using 50 IWDs and it gets an average number of 
iterations 4,893 in ten runs. The minimum and maximum 
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number of iterations in these ten runs are 1,964 and 13,597, 
respectively. It is seen that there is a wide gap between the 
minimum and maximum number of iterations. One reason 
of such a wide gap in the number of iterations is that some 
of the local optimums are harder to escape from than other 
local optimums. 

Figure 2 The minimum number of iterations to get to the global 
optimal solution versus the number of queens for the  
n-queen puzzle in ten runs of the proposed IWD-NQ 
algorithm (see online version for colours) 

 

The local optimums of the n-queen problem should be 
thoroughly analysed and based on the analyses some more 
efficient local search algorithms should be designed to help 
the IWD to escape from the local optimums. It is reminded 
that better local heuristics may make the algorithm converge 
faster to the global optimum and/or may reduce the number 
of hard local optimums. 

The next set of experiments is implemented with the 
IWD-TSP algorithm with the local heuristic mentioned in 
Section 4.1 and the modification introduced in equation (11) 
with NI = 15. To avoid the confusion, we call this Modified 
IWD-TSP or ‘MIWD-TSP’. The first experiment with the 
MIWD-TSP algorithm is executed for a number of cities 
that are placed on the perimeter of a circle in equal distances 
from each other. The algorithm is tested for different 
number of cities on the circle from ten to 100 cities 
incremented by ten. The results of this experiment are 
shown in Figure 3 in which the average numbers of 
iterations to get to the global optimums are depicted. The 
number of IWDs used for all experiments of Figure 3 is 50. 
It is seen that as the number of cities increases, the average 
number of iterations to find the relevant optimal solution 
almost monotonically increases. For example, for the  
10-city problem, 10.4 average iterations are needed whereas 
for the 20-city problem, 39.6 average iterations are needed. 

It is reminded that the IWD-TSP in Shah-Hosseini 
(2007) gets stuck in some hard local optimums for the cities 
on a circle. For example, in one of the runs of the IWD-TSP 
for the 10-city problem, the large iteration number 22275 is 
observed whereas the largest iteration number of the 
MIWD-TSP in ten runs is 33. Moreover, for the 20-city 
problem, the average number of iterations 2046 is obtained 
whereas for the MIWD-TSP, the average number 387 is 
obtained. For the circle TSP with more cities, the average 
numbers of iterations to get to the global optimums become 

so large that it is impractical to use the IWD-TSP for them. 
However, the IWD-TSP works well in finding a good local 
optimum for the toy problem as reported in Shah-Hosseini 
(2008). In summary, the MIWD-TSP algorithm is much 
more efficient for the toy TSP problem. 

Figure 3 The average number of iterations to get to the global 
optimal solution versus the number of cities of the TSP 
problem where cities equally spaced on the perimeter 
of a circle (see online version for colours) 
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Note: The results shown here are the average numbers of 

iterations of ten runs of the MIWD-TSP algorithm 

Four TSPs are chosen from the TSPLIB95 (the TSP library 
in the internet) to test the capability of the MIWD-TSP 
algorithm. The lengths of average and best tours in five runs 
of the MIWD-TSP algorithm are reported in Table 1. For 
comparison, the lengths of best tours of some other 
metaheuristics are also mentioned in Table 1. The table 
shows that the tours obtained by the MIWD-TSP algorithm 
are satisfactorily close to the known optimum solutions and 
are comparable to the other metaheuristics. The best tours of 
the TSPs in five runs of the MIWD-TSP algorithm are 
depicted in Figure 4. It is seen in Figure 4 that the tours 
have no self-crossing regions and thus the MIWD-TSP 
solves the self-crossing that sometimes happen in the  
IWD-TSP experiments in Shah-Hosseini (2007). 

The final set of experiments is executed with the  
IWD-MKP algorithm having the local heuristic  
(Shah-Hosseini, 2008) mentioned in Section 4.3. The  
IWD-MKP is tested with eight problems in file 
‘mknap2.txt’ of the OR-library (the OR-library in the 
internet). For each MKP, the best and the average qualities 
of ten runs of the IWD-MKP are reported in Table 2. The 
qualities of optimal solutions are known for the eight MKPs 
and are mentioned in the table for comparison. The  
IWD-MKP algorithm finds the global optimums for the first 
six MKPs with two constraints and 28 items. However, the 
qualities of solutions of the problems ‘WEING7’ and 
‘WEING8’ with two constraints and 105 items obtained by 
the IWD-MKP are very close to the qualities of optimal 
solutions. For the problem ‘WEING4’ with two constraints 
and 28 items, the qualities of iteration-best solutions for five 
runs of the IWD algorithm are depicted in Figure 5. In the 
figure, the best run of the IWD-MKP algorithm converges 
to the optimum solution 119377 in 12 iterations whereas its 
worst run converges in 60 iterations. 
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Table 1 The comparison between the MIWD-TSP and four other metaheuristics MMAS (Stutzle and Hoos, 1996), BCO (Teodorovic et 
al., 2006), EA (Yan et al., 2005), Improved ACO (Song et al., 2006) for the four TSPs mentioned below 

Method 

MIWD-TSP 
Problem 
name 

Optimum 
length MMAS BCO EA Improved ACO 

Best Average 

eil51 426 426 431.13 – 428.87 428.98 432.62 

eil76 538 – – 544.36 – 549.96 558.23 

st70 675 – 678.62 677.10 677.10 677.10 684.08 

kroA100 21282 21282 21441.5 21285.44 – 21407.57 21904.03 

Notes: The MIWD-TSP iterations: 3000 for eil51, 4500 for eil76 and 6000 for st70 and kroA100 

Table 2 Some of the problems of the OR-library in file ‘mknap2.txt’ which are solved by the IWD-MKP algorithm 

Quality of the  
IWD-MKP’s solution 

No. of iterations of the  
IWD-MKP Problem name Constraints × 

variables 

Quality of 
optimum 
solution Best Average Best Average 

WEING1 2 × 28 141278 141278 141278 59 1243.8 

WEING2 2 × 28 130883 130883 130883 154 618.4 

WEING3 2 × 28 95677 95677 95677 314 609.8 

WEING4 2 × 28 119337 119337 119337 4 48.5 

WEING5 2 × 28 98796 98796 98796 118 698.5 

WEING6 2 × 28 130623 130623 130623 71 970.3 

WEING7 2 × 105 1095445 1094736 1094223 100 100 

WEING8 2 × 105 624319 620872 617897.9 200 200 

Note: The global optimal solutions are also mentioned. 
 

Figure 4 The best tours of five runs of the MIWD-TSP 
mentioned in Table 1, (a) the tour of eil51 (b) the tour 
of eil76 (c) the tour of st70 (d) the tour of kroA100 

 

 

 

 

 

 

Figure 5 Convergence curves of five runs of the IWD-MKP 
algorithm for the MKP ‘WEING4’ in file ‘mknap2.txt’ 
of the OR-library with the global optimum 119337 

 
Note: Each curve in the figure shows one run of the 

algorithm. 
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6 Conclusions 

The IWD algorithm is an optimisation algorithm that uses a 
swarm of water drops to collectively search for optimal 
solutions in the environment of the given problem. In fact, 
each IWD constructs incrementally a solution to the 
problem by moving on the graph representation of the 
problem. Then, among the obtained solutions, the best one 
in terms of quality is chosen and its total path is reinforced 
by soil removal. During each iteration of the IWD 
algorithm, an IWD gains some velocity and removes some 
soil from the path it flows on. After enough iterations of the 
IWD algorithm, the IWDs find the good paths that are 
decoded to good solutions of the problem. 

Three different problems are used to experiment the 
IWD algorithm, the n-queen puzzle, the TSP and the MKP. 
Here, for the first time, the IWD algorithm is used for 
solving n-queen problems having a simple heuristic and a 
local search algorithm. It is shown that the MKP-NQ 
algorithm can find the global optimal solutions of the  
n-queen puzzle. However, by suggesting better heuristics 
and local search algorithms the number of iterations may be 
reduced. 

The IWD algorithm is modified for the TSP problem 
and this MIWD-TSP gets better tours with shorter lengths in 
comparison to the standard MKP-TSP algorithm. Moreover, 
some new MKPs are tested with the IWD-MKP algorithm 
and it is observed that the algorithm is able to find optimal 
or near optimal solutions for the given MKPs. 

This paper indicates that the IWD algorithm is capable 
to deal with optimisation problems in finding solutions with 
good or optimal qualities. However, there is an open space 
for modifications in the standard algorithm, embedding 
other mechanisms that exist in natural rivers and/or 
inventing local heuristics that fit better with the IWD 
algorithm. It also demonstrates that the nature is an 
excellent teacher for designing and inventing new  
swarm-based optimisation algorithms. 
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