
Int. J. Bio-Inspired Computation, Vol. 1, Nos. 1/2, 2009 71

Copyright © 2009 Inderscience Enterprises Ltd.

The intelligent water drops algorithm:
a nature-inspired swarm-based optimization
algorithm

Hamed Shah-Hosseini
Faculty of Electrical and Computer Engineering,
Shahid Beheshti University, G.C.,
Tehran, Iran
E-mail: tasom2002@yahoo.com
E-mail: h_shahhosseini@sbu.ac.ir

Abstract: A natural river often finds good paths among lots of possible paths in its ways from
the source to destination. These near optimal or optimal paths are obtained by the actions and
reactions that occur among the water drops and the water drops with the riverbeds. The intelligent
water drops (IWD) algorithm is a new swarm-based optimisation algorithm inspired from
observing natural water drops that flow in rivers. In this paper, the IWD algorithm is tested to
find solutions of the n-queen puzzle with a simple local heuristic. The travelling salesman
problem (TSP) is also solved with a modified IWD algorithm. Moreover, the IWD algorithm is
tested with some more multiple knapsack problems (MKP) in which near-optimal or optimal
solutions are obtained.

Keywords: swarm intelligence; intelligent water drops; IWDs; travelling salesman problem;
TSP; multiple knapsack problem; MKP; n-queen puzzle.

Reference to this paper should be made as follows: Shah-Hosseini, H. (2009) ‘The intelligent
water drops algorithm: a nature-inspired swarm-based optimisation algorithm’, Int. J.
Bio-Inspired Computation, Vol. 1, Nos. 1/2, pp.71–79.

Biographical notes: H. Shah-Hosseini received his BS in Computer Engineering from Tehran
University, his MS and PhD from Amirkabir University of Technology, all with high honours.
He is now with the Electrical and Computer Engineering Department, Shahid Beheshti
University, Tehran, Iran. His current research interests include computational intelligence
especially time-adaptive self-organising maps, evolutionary computation, swarm intelligence and
computer vision.

1 Introduction

The natural systems that have developed for so long are one
of the rich sources of inspiration for inventing new
intelligent systems. Swarm intelligence is one of the
scientific fields that are closely related to natural swarms
existing in nature, such as ant colonies, bee colonies, brain
and rivers. Among the problem solving techniques inspired
from nature are evolutionary computation (Eiben and Smith,
2003), neural networks (Haykin, 1999), time adaptive
self-organising maps (Shah-Hosseini, 2006), ant colony
optimisation (Dorigo and Stutzle, 2004), bee colony
optimisation (Sato and Hagiwara, 1997), particle swarm
optimization (Eberhart and Kennedy, 1995), DNA
computing (Adleman, 1994), electromagnetism-like
optimisation (Birbil and Fang, 2003) and intelligent water
drops (Shah-Hosseini, 2007).

One of the recently proposed algorithms in the field of
the swarm intelligence is the intelligent water drops (IWDs)
algorithm (Shah-Hosseini, 2007; Shah-Hosseini, 2008). The
IWD algorithm is based on the dynamic of river systems,
actions and reactions that happen among the water drops in

rivers. The natural water drops are used to develop IWD and
the IWDs cooperate together to reach a better solution for a
given problem. The IWD algorithm may be used for
maximisation or minimisation problems. The solutions are
incrementally constructed by the IWD algorithm. Therefore,
the IWD algorithm is a population-based constructive
optimisation algorithm.

The IWD algorithm has been used for the travelling
salesman’s problem (TSP) (Shah-Hosseini, 2007) and
multiple (or multidimensional) knapsack problem (MKP)
(Shah-Hosseini, 2008) with promising results. Both the TSP
and the MKP are NP-hard combinatorial optimisation
problems. In the TSP, a map of cities is given to the
salesman and he has to visit all the cities only once to
complete a tour such that the length of the tour is the
shortest among all possible tours for this map. In the MKP,
there are multiple knapsacks and several items and the goal
is to include some of the items in the knapsacks to achieve
maximum profit with the constraint that none of the
knapsacks becomes overflowed. Both the TSP and MKP are
often used for testing optimisation algorithms. In this paper,
the IWD-TSP algorithm (Shah-Hosseini, 2007) is modified

72 H. Shah-Hosseini

to get better results for the TSPs. Moreover, the IWD-MKP
algorithm (Shah-Hosseini, 2008) is used for some other
MKPs to observe its power for getting optimal or
near-optimal solutions.

The n-queen problem, an NP-complete problem, is also
used here to test the performance of the IWD algorithm. The
IWD algorithm that is used for solving the n-queen is called
the ‘IWD-NQ’ algorithm. The n-queen puzzle (problem)
needs to place n queens on a chessboard of size n × n such
that no two queens attack each other. Therefore, the goal is
to obtain the global optimal solution and no near-optimal
solution is acceptable.

The next section reviews some processes that occur in a
river, which involves the water drops of the river and
explains IWDs that have been developed based on the ideas
of natural water drops. Section 3 introduces the IWD
algorithm, which uses IWDs for problem solving. Section 4
shows how to use the IWD algorithm for solving three
different optimisation problems. Experimental results with
the proposed IWD algorithm for artificial and standard
TSPs, MKPs, and n-queen problems form Section 5.
Concluding remarks are the final section of the paper.

2 Basics of the IWDs

By looking at rivers in nature, we are surprised to see lots of
twists and turns along their paths. One thing that makes us
think is that why these twists have been created and is there
any logic or intelligence behind them? And if that is so, can
we use the mechanisms that happen in rivers and as a result,
can we design and develop intelligent algorithms based on
them? The IWD algorithm is a step in the direction to model
a few actions that happen in natural rivers and then to
implement them in a form of an algorithm.

In the IWD algorithm, IWDs are created with two main
properties:

• velocity

• soil.

Both of the two properties may change during the lifetime
of an IWD. An IWD flows from a source to a destination.
The IWD begins its trip with an initial velocity and zero
soil. During its trip, it travels in the environment from which
it removes some soil and it may gain some speed. An IWD
is supposed to flow in discrete steps. From its current
location to its next location, the IWD velocity is increased
by the amount non-linearly proportional to the inverse of the
soil between the two locations. Therefore, a path with less
soil lets the IWD become faster than a path with more soil.

An IWD gathers soil during its trip in the environment.
This soil is removed from the path joining the two locations.
The amount of soil added to the IWD is non-linearly
proportional to the inverse of the time needed for the IWD
to pass from its current location to the next location. This
time interval is calculated by the simple laws of physics for
linear motion. Thus, the time taken is proportional to the
velocity of the IWD and inversely proportional to the

distance between the two locations. Moreover, those parts of
the environment that are used with more IWDs will have
less soil. It may be said that soil is the source material of
information such that the environment and water drops both
have memories for soil.

An IWD needs a mechanism to select the path to its next
location or step. In this mechanism, the IWD prefers the
paths having low soils to the paths having high soils. This
behaviour of path selection is implemented by imposing a
uniform random distribution on the soils of the available
paths. Then, the probability of the next path to select is
inversely proportional to the soils of the available paths.
Therefore, paths with lower soils have higher chance to be
selected by the IWD.

3 The IWD algorithm

The IWD algorithm gets a representation of the problem in
the form of a graph (N, E) with the node set N and edge set
E. Then, each IWD begins constructing its solution
gradually by travelling on the nodes of the graph along the
edges of the graph until the IWD finally completes its
solution. One iteration of the algorithm is complete when all
IWDs have completed their solutions. After each iteration,
the iteration-best solution TIB is found and it is used to
update the total-best solution TTB. The amount of soil on the
edges of the iteration-best solution TIB is reduced based on
the goodness (quality) of the solution. Then, the algorithm
begins another iteration with new IWDs but with the same
soils on the paths of the graph and the whole process is
repeated. The algorithm stops when it reaches the maximum
number of iterations itermax or the total-best solution TTB
reaches the expected quality.

The IWD algorithm has two kinds of parameters. One
kind is those that remain constant during the lifetime of the
algorithm and they are called ‘static parameters’. The other
kind is those parameters of the algorithm, which are
dynamic and they are reinitialised after each iteration of the
algorithm. It should be reminded that the values chosen for
the static parameters of the IWD algorithm are the same
used in Shah-Hosseini (2008) until specified otherwise.

The IWD algorithm is specified in the following steps:

1 Initialisation of static parameters. The graph (N, E) of
the problem is given to the algorithm. The quality of the
total-best solution TTB is initially set to the worst value:

()TBq T = −∞ . The maximum number of iterations
itermax is specified by the user. The iteration count
itercount is set to zero.

 The number of water drops NIWD is set to a positive
integer value, which is usually set to the number of
nodes Nc of the graph.

 For velocity updating, the parameters are 1va = ,
.01vb = and 1vc = . For soil updating, 1sa = , .01sb =

and 1sc = . The local soil updating parameter nρ ,
which is a small positive number less than one, is set as

 The intelligent water drops algorithm: a nature-inspired swarm-based optimisation algorithm 73

0.9nρ = . The global soil updating parameter IWDρ ,
which is chosen from [0, 1], is set as 0.9IWDρ = .
Moreover, the initial soil on each path (edge) is denoted
by the constant InitSoil such that the soil of the path
between every two nodes i and j is set by

(,)soil i j InitSoil= . The initial velocity of each IWD is
set to InitVel. Both parameters InitSoil and InitVel are
user selected and they should be tuned experimentally
for the application. Here, InitSoil = 10000 and
InitVel = 200. For the IWD-MKP, InitVel = 4 is used,
which is the same value used in Shah-Hosseini (2008).

2 Initialisation of dynamic parameters. Every IWD has a
visited node list ()cV IWD , which is initially empty:

{ }()cV IWD = . Each IWD’s velocity is set to InitVel.
All IWDs are set to have zero amount of soil.

3 Spread the IWDs randomly on the nodes of the graph as
their first visited nodes.

4 Update the visited node list of each IWD to include the
nodes just visited.

5 Repeat Steps 5.1 to 5.4 for those IWDs with partial
solutions.

5.1 For the IWD residing in node i, choose the next
node j, which does not violate any constraints of
the problem and is not in the visited node list

()vc IWD of the IWD, using the following

probability ()IWD
ip j :

()
()

()

(,)
()

(,)
IWD
i

k vc IWD

f soil i j
p j

f soil i k
∉

=
∑

 (1)

 such that

 1((,))
((,))s

f soil i j
g soil i jε

=
+

 and

vc(IWD)

()

(,) min ((,)) 0
((,))

(,) min ((,))
l

l vc IWD

soil i j if soil i l
g soil i j

soil i j soil i l else
∉

∉

≥⎧
⎪= ⎨ −⎪⎩

Then, add the newly visited node j to the list
()vc IWD .

5.2 For each IWD moving from node i to node j,
update its velocity ()IWDvel t by

2(1) ()
 . (,)

IWD IWD v

v v

a
vel t vel t

b c soil i j
+ = +

+
 (2)

 where (1)IWDvel t + is the updated velocity of
the IWD.

5.3 For the IWD moving on the path from node i to
j, compute the soil (,)soil i jΔ that the IWD
loads from the path by

()2
(,)

. , ; (1)
s

IWD
s s

a
soil i j

b c time i j vel t
Δ =

+ +
 (3)

 such that

() () , ; (1)
(1)

IWD
IWD

HUD jtime i j vel t
vel t

+ =
+

 where

the heuristic undesirability HUD(j) is defined
appropriately for the given problem.

5.4 Update the soil (,)soil i j of the path from node
i to j traversed by that IWD and also update the
soil that the IWD carries IWDsoil by

(,) (1) . (,) . (,)

(,)
n n

IWD IWD

soil i j soil i j soil i j

soil soil soil i j

= −ρ −ρ Δ

= +Δ
 (4)

6 Find the iteration-best solution TIB from all the
solutions TIWD found by the IWDs using

arg max ()
IWD

IB IWD

T
T q T

∀
= (5)

 where function (.)q gives the quality of the solution.

7 Update the soils on the paths that form the current
iteration-best solution TIB by

IWD(,) (1) . (,)
1 . . (,)

(-1)
IWD IB

IWD IB
IB

soil i j soil i j

soil i j T
N

ρ

ρ

= +

− ∀ ∈
 (6)

 where IBN is the number of nodes in the solution TIB.

8 Update the total best solution TTB by the current
iteration-best solution TIB using

 () ()

TB TB IB
TB

IB

T if q T q T
T

T otherwise

⎧ ≥⎪= ⎨
⎪⎩

 (7)

9 Increment the iteration number by
1count countIter Iter= + . Then, go to Step 2 if

maxcountIter Iter< .

10 The algorithm stops here with the total-best solution
TTB.

It is reminded that the IWD has been shown to have the
property of convergence in value (Shah-Hosseini, 2008). It
means that the IWD algorithm is able to find the optimal
solution if the number of iterations be sufficiently large.

The IWD algorithm may be compared to the ant-based
optimisation algorithms (Bonabeau et al., 1999). The ants in
an ant colony optimisation algorithm deposit pheromones
on the paths they move on. The IWDs change soil on the
paths they flow over. However, in contrast to the ants, these
changes are not constant and are dependent on the velocity
and soil of the IWD visiting the paths. Moreover, the IWDs
may gain different velocities throughout an iteration of the
IWD algorithm whereas in ant-based algorithms the
velocities of the ants are irrelevant to the algorithm.

74 H. Shah-Hosseini

4 Solving problems by the IWD algorithm

The IWD algorithm may be used to solve optimisation
problems. An IWD in the algorithm both searches and
changes the environment of the given problem. By doing
that, the IWD constructs incrementally a solution to the
problem. The problem should be presented to the IWD
algorithm in the form of a graph and the IWDs actually go
node to node on the links of the graph. A swarm of IWDs
flows in the graph with the guidance of a local heuristic in
the hope of finding optimal or near optimal solutions. In the
following, three different problems are stated and then it is
shown how to use the IWD algorithm for solving them.

4.1 The travelling salesman’s problem

In this subsection, we specifically express the steps for
solving the travelling salesman problem or the TSP. Then, a
modification to the IWD-TSP in Shah-Hosseini (2007) is
proposed. In the TSP, a map of cities is given to the
salesman and he is required to visit the entire cities one after
the other to complete his tour such that in this tour every
city is visited only once except the first city of the tour
which is visited twice to form a round trip (tour). The goal
in the TSP is to find the tour with the minimum total length
among all such possible tours, which are obtainable for the
given map.

A TSP is represented by a graph (N, E) where the node
set N denotes the n cities of the TSP and the edge set E
denotes the paths between each two cities. In this paper, the
graph of the TSP is considered a complete graph. Therefore,
every city has a direct path to another city. Here, it is
assumed that the direct path between each two cities is an
undirected path. So, in summary, the graph of the TSP is a
complete undirected graph. A solution of the TSP having
the graph (N, E) is then an ordered set of n distinct cities.

A TSP solution for an n-city problem may be
represented by the tour ()1 2, ,..., nT c c c= . The salesman
travels from city c1 to c2, then from c2 to c3 and he continues
this way until it gets to city cn. He then returns to the first
city c1. The tour length, (.)TL is calculated by

() ()1 2 1
1

 , ,..., ,
n

n i i
i

TL c c c d c c +
=

= ∑ (8)

such that 1 1nc c+ = and the distance function (.,.)d which
computes the distance between two cities is often selected
as the Euclidean distance. The goal of any optimisation
algorithm for the TSP is to find the tour ()* * *

1 2* , ,..., nT c c c=

with the minimum length among all possible tours:

1 2

1 2

 (*) (, ,...,)
 (, ,...,)

n

n

TL T TL c c c
for every tour c c c

≤
 (9)

where (.)TL returns the total length of the given tour. The
tour *T is called the global optimum tour.

In order to use the IWD algorithm for the TSP, the TSP
problem as mentioned above is viewed as a complete

undirected graph (N, E). Each link of the edge set E has an
amount of soil. An IWD can travel between nodes of the
graph through these links and is able to change the amount
of the soils on the links. Moreover, cities of the TSP are
denoted by nodes of the graph, which hold the physical
positions of cities. An IWD starts its tour from a random
node and it visits other nodes using the links of the graph
until it returns to the first node. The IWD changes the soil of
each link that it flows on while completing its tour.

For the TSP, the constraint that each IWD never visits a
city twice in its tour must be kept satisfied. Therefore, for
the IWD, a visited city list ()cV IWD is employed. This list
includes the cities visited so far by the IWD. So, the next
possible cities for an IWD are selected from those cities that
are not in the visited list ()cV IWD of the IWD.

The local heuristic for the TSP, denoted by
(,)TSPHUD i j , has been suggested as follows:

(,) () () TSPHUD i j i j= −c c (10)

where ()kc denotes the two dimensional positional vector
for the city k. The function . denotes the Euclidean
norm. The local heuristic (,)TSPHUD i j measures the
undesirability of an IWD to move from city i to city j. For
near cities i and j, the heuristic measure (,)HUD i j
becomes small whereas for far cities i and j, the measure

(,)HUD i j becomes big. The time, which is taken for the
IWD to pass from city i to city j, is proportional to the
heuristic (,)TSPHUD i j .

A modification to the IWD-TSP is proposed here to get
better tours and hopefully escape local optimums. After
every constant number of iterations, IN , the soils of all
paths of the graph problem are reinitialised again such that
the paths of the total-best solution TTB are given less soil
than the other paths:

 (,)(,)

TB
I I InitSoil for every i j Tsoil i j

InitSoil otherwise
α⎧ Γ ∈⎪= ⎨
⎪⎩

 (11)

where Iα is a small positive number chosen here as 0.1. IΓ
denotes a random number, which is drawn from a uniform
distribution in the interval [0, 1]. As a result, IWDs prefer to
choose paths of TTB because less soil on its paths is
deposited.

4.2 The n-queen problem

The 8-queen puzzle is the problem of putting eight chess
queens on an 8 × 8 chessboard such that no two queens are
able to attack each other. Thus, a solution requires that no
two queens occupy the same row, column, or diagonal. The
8-queen puzzle can be generalised to the n-queen puzzle in
which n queens must be placed on an n × n chessboard such
that no two queens attack each other (Watkins, 2004). The
solution exists for 1n = and 4n ≥ .

 The intelligent water drops algorithm: a nature-inspired swarm-based optimisation algorithm 75

One strategy to reduce the huge search space 64n in the
n-queen problem is to place the n queens one by one on the
chessboard such that the first queen is placed on any row of
the first column. Then, the second queen is placed on any
row of the second column except the row of the first queen.
Following this strategy, the ith queen is placed on any row
of the ith column except those rows that previous queens
have occupied. This incremental strategy of putting queens
on the chessboard reduces the search space to n! where the
symbol ‘!’ denotes the factorial.

In the incremental strategy, if every row of the
chessboard is considered a city, then the n-queen problem
may be considered as a TSP. The first row chosen by the
first queen is considered the first city of the tour. The
second row chosen by the second queen is called the second
city of the tour. Continuing this way, the ith row chosen by
the ith queen is considered the ith city of the tour. The
constraint that no two queens are in the same row is viewed
as no two cities of the TSP graph are visited by the
salesman. In summary, for the n-queen problem, a complete
undirected TSP graph is created.

In the n-queen problem, any feasible solution is also the
optimal solution because any feasible solution for an
n-queen problem is the solution in which no two queens
attack each other and that is the desired solution. For this
problem, only the final positions of queens on the
chessboard are desired to be found while the path to reach
the final feasible (optimal) solution(s) is not wanted.

For an IWD to solve the n-queen problem, the local
heuristic undesirability (,)NQHUD i j , which is used in the

IWD algorithm, is proposed as follows:

(,) (1)
2NQ
nHUD i j r i j= + − − (12)

where (,)NQHUD i j is the undesirability of an IWD to go

from current row (city) i to the next row (city) j. The
variable r is a random number chosen uniformly from the
interval [0, 1]. The symbol n denotes the number of cities
(columns or rows) of the chessboard of size n × n. The
heuristic of equation (12) favours the distance between the
rows of neighbouring columns to be near the length n/2.

For the n-queen problem, it is observed experimentally
that the IWD algorithm with the proposed local heuristic is
usually trapped in the local optima in which only two
queens attack each other. Sometimes, coming out of such
local optima takes considerable iterations of the algorithm.
Using a good local search algorithm may help to come out
of such local optima faster. In this regard, a simple local
search algorithm is proposed. This local search algorithm
called ‘n-queen local search’ or NQLS is activated only
when the iteration-best solution of the IWD algorithm
contains only two queens attacking each other.

For the n-queen problem, the quality of a solution T is
given by

1

1 1
() (,)

n n

i j
i j i

q T attack c c
−

= = +
= −∑ ∑ (13)

such that

1
(,)

0
i j

i j
if c and c attack each other

attack c c
else

⎧⎪= ⎨
⎪⎩

 (14)

The optimal solution T* has the quality value zero:
(*) 0q T = . It is hoped that the total-best iteration TTB

reaches the quality zero. As a result, the proposed NQLS
algorithm is activated when the quality of the iteration-best
solution TTB becomes –1.

In the following, the proposed NQLS is expressed in
four steps:

1 Get the iteration-best solution with tour

()1 2, ,...,IB IB IB IB
nT c c c= with the quality () 1IBq T = − .

2 Set 0
IBT T= .

 For k=1, 2, …, n–1 do the following steps (Steps 2.1 to
2.3):

2.1 Shift the cities in the tour one position to the
right such that the last city becomes the first city
in the tour: 1()

Rightk kT shift T −= .

2.2 if () 0kq T = , then set 0 kT T= and jump to Step
4.

2.3 End loop.

3 For k=1, 2, …, n–1 do the following steps (Steps 3.1 to
3.3):

3.1 Increment each city’s number (row) by one such
that the highest row becomes the lowest row in
the chessboard: 1() modk kT T k n−= + , where
mod is the modulus function. Moreover, the
increment inside the parenthesis is applied to
each city of the tour 1kT − .

3.2 If () 0kq T = , then set 0 kT T= and jump to Step
4.

3.3 End loop.

4 If 0() 0q T = , then the total-best iteration solution TTB
has been obtained and is updated by TTB = T0;
otherwise, no updating is implemented by this
algorithm.

The IWD algorithm for the n-queen problem is called
‘IWD-NQ’ algorithm. The proposed IWD-NQ algorithm
uses the standard IWD algorithm mentioned in Section 3
with the local heuristic (,)NQHUD i j defined in equation

(12) and the local search algorithm NQLS, which has been
proposed above.

4.3 The multiple knapsack problem

The knapsack problem or KP (Kellerer et al., 2004) is to
select a subset of items i of the set I each item i with the
profit ib and resource (capacity) requirement ir such that

76 H. Shah-Hosseini

they all fit in a knapsack of limited capacity and the sum of
profits of the selected items is maximised.

The multiple or multidimensional knapsack problem,
MKP, is a generalisation of the KP. In the MKP, there exists
multiple knapsacks and thus there are multiple resource
constraints. The inclusion of an item i in the m knapsacks is
denoted by setting the variable iy to one, otherwise iy is
set to zero. Let the variable ijr represents the resource

requirement of an item i with respect to the resource
constraint (knapsack) j having the capacity ja . In other

words, ijr represents the amount of capacity that item i

requires from knapsack j. The MKP with m constraints
(knapsacks) and n items wants to maximise the total profit
of including a subset of the n items in the knapsacks without
surpassing the capacities of the knapsacks. For the MKP, in
more specific terms:

1
max

n

i i
i

y b
=
∑ (15)

subject to the following constraints:

1
 1, 2,...,

n

ij i j
i

r y a for j m
=

≤ =∑ . (16)

where { } 0,1 iy ∈ for 1, 2,...,i n= . Here, the profits ib
and the resources requirements ijr are non-negative values.

To solve the MKP using the IWD algorithm, the search
space of the problem is viewed as a graph (N, E) where the
node set N denotes the items of the MKP and the edge set E
denotes the arcs (paths) between the items (nodes). A
feasible solution is a set of N ′ items such that they do not
violate the constraints in equation (16) and N N′ ⊆ . For the
MKP, the optimal solution is also a feasible solution and it
is composed of a subset of n items, which maximises the
profit defined in equation (15). Therefore, the order of
selecting items in the solution of the MKP is not important
and not all items may be included in the solution.

The heuristic undesirability ()MKPHUD j that has been
used in the IWD-MKP algorithm (Shah-Hosseini, 2008) is
defined as follows:

A simple local heuristic is used which reflects the
undesirability of adding an item to the current partial
solution. Let the ()MKPHUD j for the MKP be defined as

1

1()
m

MKP jk
j k

HUD j r
mb =

= ∑ . (17)

Where jb denotes the profit of item j and jkr is the

resource requirement for item j from knapsack k. Equation
(17) shows that ()MKPHUD j decreases if the profit jb is

high whereas ()MKPHUD j increases if the resource
requirements of item j are high. As a result, the items with
less resource requirements and higher profits are more
desirable. ()MKPHUD j represents how undesirable is the

action of selecting item j as the next item to be included in
the knapsacks.

The IWD-MKP algorithm uses the standard IWD
algorithm mentioned in Section 3 and the local heuristic

()MKPHUD j defined in equation (17) to solve the MKP.

5 Experimental results

The IWD algorithm is used for three different problems:
n-queen puzzle, the TSP and the MKP. The first set of
experiments is used to test the capabilities of the proposed
IWD-NQ algorithm introduced in Section 4.2 for the
n-queen puzzle. The IWD-NQ has a simple heuristic and a
plain local search algorithm to escape from local optimums.
The IWD-NQ is tested with ten different n-queens puzzle
where n is increased from ten to 100 by increments of ten.
The average number of iterations for the ten runs of each
n-queen puzzle is depicted in Figure 1. In these
experiments, the number of IWDs is kept constant with 50
IWDs.

Figure 1 The average number of iterations to get to the global
optimal solution versus the number of queens for the
n-queen puzzle (see online version for colours)

Note: The results shown here are the average iterations

of ten runs of the proposed IWD-NQ algorithm

It is seen that the number of iterations to get to the optimal
solution(s) does not depend necessarily to the number of
queens. For example, the average number of iterations for
the 90-queen problem is bigger than the 100-queen problem.
One reason is that getting out of the local optimal solution
for the case with 90 queens is more difficult than the case
with 100. In other words, the proposed local heuristic of
equation (12) works better for some number of queens than
the others.

For the aforementioned experiments, the lowest
numbers of iterations in ten runs of the IWD-NQ algorithm
are shown in Figure 2. In this figure, the number of
iterations increases as the number of queens is increased.
Therefore, the results for best performance (lowest
iterations) in ten runs depend on the number of queens and
often increase with increase in the number of queens.

The IWD-NQ algorithm is tested with the 200-queens
problem using 50 IWDs and it gets an average number of
iterations 4,893 in ten runs. The minimum and maximum

10 20 30 40 50 60 70 80 90 100

0

500

1000

1500

2000

2500

3000

Ite
ra

tio
ns

no. queens

 The intelligent water drops algorithm: a nature-inspired swarm-based optimisation algorithm 77

number of iterations in these ten runs are 1,964 and 13,597,
respectively. It is seen that there is a wide gap between the
minimum and maximum number of iterations. One reason
of such a wide gap in the number of iterations is that some
of the local optimums are harder to escape from than other
local optimums.

Figure 2 The minimum number of iterations to get to the global
optimal solution versus the number of queens for the
n-queen puzzle in ten runs of the proposed IWD-NQ
algorithm (see online version for colours)

The local optimums of the n-queen problem should be
thoroughly analysed and based on the analyses some more
efficient local search algorithms should be designed to help
the IWD to escape from the local optimums. It is reminded
that better local heuristics may make the algorithm converge
faster to the global optimum and/or may reduce the number
of hard local optimums.

The next set of experiments is implemented with the
IWD-TSP algorithm with the local heuristic mentioned in
Section 4.1 and the modification introduced in equation (11)
with NI = 15. To avoid the confusion, we call this Modified
IWD-TSP or ‘MIWD-TSP’. The first experiment with the
MIWD-TSP algorithm is executed for a number of cities
that are placed on the perimeter of a circle in equal distances
from each other. The algorithm is tested for different
number of cities on the circle from ten to 100 cities
incremented by ten. The results of this experiment are
shown in Figure 3 in which the average numbers of
iterations to get to the global optimums are depicted. The
number of IWDs used for all experiments of Figure 3 is 50.
It is seen that as the number of cities increases, the average
number of iterations to find the relevant optimal solution
almost monotonically increases. For example, for the
10-city problem, 10.4 average iterations are needed whereas
for the 20-city problem, 39.6 average iterations are needed.

It is reminded that the IWD-TSP in Shah-Hosseini
(2007) gets stuck in some hard local optimums for the cities
on a circle. For example, in one of the runs of the IWD-TSP
for the 10-city problem, the large iteration number 22275 is
observed whereas the largest iteration number of the
MIWD-TSP in ten runs is 33. Moreover, for the 20-city
problem, the average number of iterations 2046 is obtained
whereas for the MIWD-TSP, the average number 387 is
obtained. For the circle TSP with more cities, the average
numbers of iterations to get to the global optimums become

so large that it is impractical to use the IWD-TSP for them.
However, the IWD-TSP works well in finding a good local
optimum for the toy problem as reported in Shah-Hosseini
(2008). In summary, the MIWD-TSP algorithm is much
more efficient for the toy TSP problem.

Figure 3 The average number of iterations to get to the global
optimal solution versus the number of cities of the TSP
problem where cities equally spaced on the perimeter
of a circle (see online version for colours)

10 20 30 40 50 60 70 80 90 100

0

100

200

300

400

500

Ite
ra

tio
ns

No. cities
Note: The results shown here are the average numbers of

iterations of ten runs of the MIWD-TSP algorithm

Four TSPs are chosen from the TSPLIB95 (the TSP library
in the internet) to test the capability of the MIWD-TSP
algorithm. The lengths of average and best tours in five runs
of the MIWD-TSP algorithm are reported in Table 1. For
comparison, the lengths of best tours of some other
metaheuristics are also mentioned in Table 1. The table
shows that the tours obtained by the MIWD-TSP algorithm
are satisfactorily close to the known optimum solutions and
are comparable to the other metaheuristics. The best tours of
the TSPs in five runs of the MIWD-TSP algorithm are
depicted in Figure 4. It is seen in Figure 4 that the tours
have no self-crossing regions and thus the MIWD-TSP
solves the self-crossing that sometimes happen in the
IWD-TSP experiments in Shah-Hosseini (2007).

The final set of experiments is executed with the
IWD-MKP algorithm having the local heuristic
(Shah-Hosseini, 2008) mentioned in Section 4.3. The
IWD-MKP is tested with eight problems in file
‘mknap2.txt’ of the OR-library (the OR-library in the
internet). For each MKP, the best and the average qualities
of ten runs of the IWD-MKP are reported in Table 2. The
qualities of optimal solutions are known for the eight MKPs
and are mentioned in the table for comparison. The
IWD-MKP algorithm finds the global optimums for the first
six MKPs with two constraints and 28 items. However, the
qualities of solutions of the problems ‘WEING7’ and
‘WEING8’ with two constraints and 105 items obtained by
the IWD-MKP are very close to the qualities of optimal
solutions. For the problem ‘WEING4’ with two constraints
and 28 items, the qualities of iteration-best solutions for five
runs of the IWD algorithm are depicted in Figure 5. In the
figure, the best run of the IWD-MKP algorithm converges
to the optimum solution 119377 in 12 iterations whereas its
worst run converges in 60 iterations.

10 20 30 40 50 60 70 80 90 100

0

100
200

300

400

500

600

700

Ite
ra

tio
ns

no. queens

78 H. Shah-Hosseini

Table 1 The comparison between the MIWD-TSP and four other metaheuristics MMAS (Stutzle and Hoos, 1996), BCO (Teodorovic et
al., 2006), EA (Yan et al., 2005), Improved ACO (Song et al., 2006) for the four TSPs mentioned below

Method

MIWD-TSP
Problem
name

Optimum
length MMAS BCO EA Improved ACO

Best Average

eil51 426 426 431.13 – 428.87 428.98 432.62

eil76 538 – – 544.36 – 549.96 558.23

st70 675 – 678.62 677.10 677.10 677.10 684.08

kroA100 21282 21282 21441.5 21285.44 – 21407.57 21904.03

Notes: The MIWD-TSP iterations: 3000 for eil51, 4500 for eil76 and 6000 for st70 and kroA100

Table 2 Some of the problems of the OR-library in file ‘mknap2.txt’ which are solved by the IWD-MKP algorithm

Quality of the
IWD-MKP’s solution

No. of iterations of the
IWD-MKP Problem name Constraints ×

variables

Quality of
optimum
solution Best Average Best Average

WEING1 2 × 28 141278 141278 141278 59 1243.8

WEING2 2 × 28 130883 130883 130883 154 618.4

WEING3 2 × 28 95677 95677 95677 314 609.8

WEING4 2 × 28 119337 119337 119337 4 48.5

WEING5 2 × 28 98796 98796 98796 118 698.5

WEING6 2 × 28 130623 130623 130623 71 970.3

WEING7 2 × 105 1095445 1094736 1094223 100 100

WEING8 2 × 105 624319 620872 617897.9 200 200

Note: The global optimal solutions are also mentioned.

Figure 4 The best tours of five runs of the MIWD-TSP
mentioned in Table 1, (a) the tour of eil51 (b) the tour
of eil76 (c) the tour of st70 (d) the tour of kroA100

Figure 5 Convergence curves of five runs of the IWD-MKP
algorithm for the MKP ‘WEING4’ in file ‘mknap2.txt’
of the OR-library with the global optimum 119337

Note: Each curve in the figure shows one run of the

algorithm.

1 6 11 16 21 26 31 36 41 46 51 56

0

20000

40000

60000

80000

100000

120000

Q
ua

lit
y

Iterations

 The intelligent water drops algorithm: a nature-inspired swarm-based optimisation algorithm 79

6 Conclusions

The IWD algorithm is an optimisation algorithm that uses a
swarm of water drops to collectively search for optimal
solutions in the environment of the given problem. In fact,
each IWD constructs incrementally a solution to the
problem by moving on the graph representation of the
problem. Then, among the obtained solutions, the best one
in terms of quality is chosen and its total path is reinforced
by soil removal. During each iteration of the IWD
algorithm, an IWD gains some velocity and removes some
soil from the path it flows on. After enough iterations of the
IWD algorithm, the IWDs find the good paths that are
decoded to good solutions of the problem.

Three different problems are used to experiment the
IWD algorithm, the n-queen puzzle, the TSP and the MKP.
Here, for the first time, the IWD algorithm is used for
solving n-queen problems having a simple heuristic and a
local search algorithm. It is shown that the MKP-NQ
algorithm can find the global optimal solutions of the
n-queen puzzle. However, by suggesting better heuristics
and local search algorithms the number of iterations may be
reduced.

The IWD algorithm is modified for the TSP problem
and this MIWD-TSP gets better tours with shorter lengths in
comparison to the standard MKP-TSP algorithm. Moreover,
some new MKPs are tested with the IWD-MKP algorithm
and it is observed that the algorithm is able to find optimal
or near optimal solutions for the given MKPs.

This paper indicates that the IWD algorithm is capable
to deal with optimisation problems in finding solutions with
good or optimal qualities. However, there is an open space
for modifications in the standard algorithm, embedding
other mechanisms that exist in natural rivers and/or
inventing local heuristics that fit better with the IWD
algorithm. It also demonstrates that the nature is an
excellent teacher for designing and inventing new
swarm-based optimisation algorithms.

Acknowledgements

This work has been supported by a research grant of Shahid
Beheshti University.

References
Adleman, L.M. (1994) ‘Molecular computation of solutions to

combinatorial problem’, Science, pp.1021–1023.
Birbil, I. and Fang, S.C. (2003) ‘An electro-magnetism-like

mechanism for global optimization’, Journal of Global
Optimization, Vol. 25, pp.263–282.

Bonabeau, E., Dorigo, M. and Theraultz, G. (1999) Swarm
Intelligence: From Natural to Artificial Systems, Oxford
University Press.

Dorigo, M. and Stutzle, T. (2004) Ant Colony Optimization,
Prentice-Hall.

Eberhart, R.C. and Kennedy, J. (1995) ‘A new optimizer using
particle swarm theory’, Proc. Sixth Int. Symposium on Micro
Machine and Human Science, Nagoya, Japan, pp.39–43.

Eiben, A.E. and Smith, J.E. (2003) Introduction to Evolutionary
Computing, Springer-Verlag.

Haykin, S. (1999) Neural Networks: A Comprehensive
Foundation, 2nd ed., Prentice-Hall.

Kellerer, H., Pferschy, U. and Pisinger, D. (2004) Knapsack
Problems, Springer, New York, NY.

OR-library, Available at
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files.

Sato, T. and Hagiwara, M. (1997) ‘Bee system: finding solution by
a concentrated search’, IEEE Int. Conf. on Computational
Cybernetics and Simulation, pp.3954–3959.

Shah-Hosseini, H. (2006) ‘The time adaptive self-organizing map
is a neural network based on artificial immune system’, Proc.
IEEE World Congress on Computational Intelligence,
Vancouver, Canada, July, pp.1007–1014.

Shah-Hosseini, H. (2007) ‘Problem solving by intelligent water
drops’, Proc. IEEE Congress on Evolutionary Computation,
Swissotel The Stamford, Singapore, September,
pp.3226–3231.

Shah-Hosseini, H. (2008) ‘Intelligent water drops algorithm: a new
optimization method for solving the multiple knapsack
problem’, Int. Journal of Intelligent Computing and
Cybernetics, Vol. 1, No. 2, pp.193–212.

Song, X., Li, B. and Yang, H. (2006) ‘Improved ant colony
algorithm and its applications in TSP’, Proc. of the Sixth Int.
Conf. on Intelligent Systems Design and Applications,
pp.1145–1148.

Stutzle, T. and Hoos, H. (1996) ‘Improving the ant system: a
detailed report on the MAX-MIN ant system’, Technical
Report AIDA 96-12, FG Intellektik, TU Darmstadt, Germany.

Teodorovic, D., Lucic, P., Markovic, G. and Orco, M.D. (2006)
‘Bee colony optimization: principles and applications’, 8th
Seminar on Neural Network Applications in Electrical
Engineering, NEUREL-2006, Serbia, September, pp.25–27.

TSP library, available at http://www.informatik.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/STSP.html.

Watkins, J. (2004) Across the Board: The Mathematics of
Chessboard Problems, Princeton University Press, Princeton,
NJ.

Yan, X-S., Li, H., Cai, Z-H. and Kang, L-S. (2005) ‘A fast
evolutionary algorithm for combinatorial optimization
problem’, Proc. of the Fourth Int. Conf. on Machine Learning
and Cybernetics, August, pp.3288–3292.

