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Abstract—In this paper, we propose a new problem solving
algorithm called “Intelligent Water Drops” or IWD algorithm
which is based on the processes that happen in the natural river
systems and the actions and reactions that take place between
water drops in the river and the changes that happen in the
environment that river is flowing. It is observed that a river
often chooses an optimum path regarding the conditions of its
surroundings to get to its ultimate goal which is often a lake or
sea. These ideas are embedded into the proposed algorithm for
solving the Traveling Salesman Problem or the TSP. The IWD
algorithm is tested with artificial and standard TSP problems
and the experimental results demonstrate that it is a very
promising problem solving algorithm and deserves more
research to improve it and/or to adapt it to other engineering
problems.

I. INTRODUCTION

he creatures and natural systems which are working and

developing in nature are one of the interesting and
valuable sources of inspiration for designing and inventing
new systems and algorithms in different fields of science
and technology. Evolutionary Computation [1], Neural
Networks [2], Time Adaptive Self-Organizing Maps [3],
Ant Systems [4], Particle Swarm Optimization [5],
Simulated Annealing [6], and DNA Computing [7] are
among the problem solving techniques inspired from
observing nature.

Here, we propose a problem solving algorithm based on
the dynamic of river systems and the actions that water
drops do in the rivers. The ideas that are taken from natural
water drops are used in order to develop artificial water
drops. The artificial water drops are then adapted for solving
the TSP problems. In the TSP, a map of cities is given to the
salesman and he has to visit all the cities only once to
complete a tour such that the length of the tour is the
shortest among all possible tours for this map. It is known
that the TSP is an NP-hard problem [8] and is often used for
testing the optimization algorithms.

The next section reviews some processes that occur in a
river which involves the water drops of the river. Section III
proposes intelligent water drops based on the ideas of
natural water drops. Section IV introduces the IWD
algorithm which uses intelligent water drops for solving the
TSP. Experimental results with the proposed IWD algorithm
for artificial and standard TSPs form section V. Concluding
remarks are the final section of the paper.
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II. NATURAL WATER DROPS

In nature, we often see water drops moving in rivers,
lakes, and seas. As water drops move, they change their
environment in which they are flowing. Moreover, the
environment itself has substantial effects on the paths that
the water drops follow. Consider a hypothetical river in
which water is flowing and moving from high terrain to
lower terrain and finally joins a lake or sea. The paths that
the river follows, based on our observation in nature, are
often full of twists and turns. We also know that the water
drops have no visible eyes to be able to find the destination
(lake or river). If we put ourselves in place of a water drop
of the river, we feel that some force pulls us toward itself
(gravity). This gravitational force as we know from physics
is straight toward the center of the earth. Therefore with no
obstacles and barriers, the water drops would follow a
straight path toward the destination, which is the shortest
path from the source to the destination. However, due to
different kinds of obstacles in the way of this ideal path, the
real path will have to be different from the ideal path and we
often see lots of twists and turns in a river path. In contrast,
the water drops always try to change the real path to make it
a better path in order to approach the ideal path. This
continuous effort changes the path of the river as time passes
by. One feature of a water drop is the velocity that it flows
which enables the water drop to transfer an amount of soil
from one place to another place in the front. This soil is
usually transferred from fast parts of the path to the slow
parts. As the fast parts get deeper by being removed from
soil, they can hold more volume of water and thus may
attract more water. The removed soils which are carried in
the water drops are unloaded in slower beds of the river.
There are other mechanisms which are involved in the river
system which we don’t intend to consider them all here.

In summary, a water drop in a river has a non-zero
velocity. It often carries an amount of soil. It can load some
soil from an area of the river bed, often from fast flowing
areas and unload them in slower areas of the river bed.
Obviously, a water drop prefers an easier path to a harder
path when it has to choose between several branches that
exist in the path from the source to the destination.

III. INTELLIGENT WATER DROPS

Based on the observation on the behavior of water drops,
we develop an artificial water drop which possesses some of
the remarkable properties of the natural water drop. This
Intelligent Water Drop, IWD for short, has two important
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properties:

1) The amount of the soil it carries now, Soil(IWD).

2) The velocity that it is moving now, Velocity(IWD).

The values of the both properties may change as the IWD
flows in its environment. This environment depends on the
problem at hand. In an environment, there are usually lots of
paths from a given source to a desired destination, which the
position of the destination may be known or unknown. If we
know the position of the destination, the goal is to find the
best (often the shortest) path from the source to the
destination. In some cases, in which the destination is
unknown, the goal is to find the optimum destination in
terms of cost or any suitable measure for the problem.

We consider an IWD moving in discrete finite-length
steps. From its current location to its next location, the IWD
velocity is increased by the amount nonlinearly proportional
to the inverse of the soil between the two locations.
Moreover, the IWD’s soil is increased by removing some
soil of the path joining the two locations. The amount of soil
added to the IWD is inversely (and nonlinearly) proportional
to the time needed for the IWD to pass from its current
location to the next location. This duration of time is
calculated by the simple laws of physics for linear motion.
Thus, the time taken is proportional to the velocity of the
IWD and inversely proportional to the distance between the
two locations.

Another mechanism that exists in the behavior of an IWD
is that it prefers the paths with low soils on its beds to the
paths with higher soils on its beds. To implement this
behavior of path choosing, we use a uniform random
distribution among the soils of the available paths such that
the probability of the next path to choose is inversely
proportional to the soils of the available paths. The lower the
soil of the path, the more chance it has for being selected by
the IWD.

IV. INTELLIGENT WATER DROPS FOR THE TSP

In this section, we specifically express the steps for
solving the TSP. The first step is how to represent the TSP
in a suitable way for the IWD. For the TSP, the cities are
often modeled by nodes of a graph, and the links in the
graph represent the paths joining each two cities. Each link
or path has an amount of soil. An IWD can travel between
cities through these links and can change the amount of their
soils. Therefore, each city in the TSP is denoted by a node in
the graph which holds the physical position of each city in
terms of its two dimensional coordinates while the links of
the graph denote the paths between cities. To implement the
constraint that each IWD never visits a city twice, we
consider a visited city list for the IWD which this list
includes the cities visited so far by the IWD. So, the possible
cities for an IWD to choose in its next step must not be from
the cities in the visited list.

In the following, we present the proposed Intelligent
Water Drop (IWD) algorithm for the TSP:
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1. Initialization of static parameters: set the number of
water drops Nyp, the number of cities N_., and the

Cartesian coordinates of each city 7 such that ¢(i) = [x,- s y,-] T
to their chosen constant values. The number of cities and
their coordinates depend on the problem at hand while
the Ny is set by the user. Here, we choose Ny, to be

equal to the number of cities N, . For velocity updating, we
use parameters a, =1000, b, =.01, and ¢, =1. For soil
updating, we use parameters a, =1000, b, =.01, and
¢, =1. Moreover, the initial soil on each link is denoted by
the constant /nitSoil such that the soil of the link between
every two cities i and j is set by soil(i, j) = InitSoil . The
initial velocity of IWDs is denoted by the constant InitVel .
Both parameters [nitSoil and InitVel are also user selected.
In this paper, we choose [nitSoil =1000 and InitVel =100 .
The best tour is denoted by 7 which is still unknown and
its length is initially set to infinity: Len(T ) = o= . Moreover,

we should specify the maximum number of iterations that
the algorithm should be repeated or some other terminating
condition suitable for the problem.

2. Initialization of dynamic parameters: For every IWD,
we create a visited city list ¥, (IWD)={ } set to the empty

list. The velocity of each IWD is set to /nitVel whereas the
initial soil of each IWD is set to zero.

3. For every IWD, randomly select a city and place that
IWD on the city.

4. Update the visited city lists of all IWDs to include the
cities just visited.

5. For each IWD, choose the next city j to be visited by
the IWD when it is in city i with the following probability:

(s0il(i, ))

WD [~ _
keve(IWD)
such that f(s0il(i, j)) = - and

£, +g(s0il (i, )
if min (soil(i,/))=0
lg ve(IWD)

soil(i, J) —lgvrggrwllm(soil(i, )

soil(i, J)
g(soil(i, j)) = else
Here & is a small positive number to prevent a possible
division by zero in the function f(.). Here, we use
€, =0.01. The function min(.) returns the minimum value
among all available values for its argument. Moreover,
ve(IWD) is the visited city list of the IWD.
6. For each IWD moving from city i to city j, update its
velocity as follows
a

vel P (¢t +1) = vel "P (1) 4 ————— )
b, +c, .soil(i, j)
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such that vel™” (¢ +1) is the updated velocity of the IWD.
soil(i, j) is the soil on the path (link) joining the current city
i and the new city j. With formula (2), the velocity of the
IWD increases less if the amount of the soil is high and the
velocity would increase more if the soil is low on the path.

7. For each IWD, compute the amount of the
soil, Asoil(i, j) , that the current water drop IWD loads from
its the current path between two cities i andj :

a

Asoil(i, j) = : 3
ot b, +cS.time(i,j;veZ]WD) ®
such that  imel i, j;vel™” )= ma:(;)_:e(lj I)WHD which

computes the time taken to travel from city i to city j with
the velocity vel””” . Here, the function ¢(.) represents the
two dimensional positional vector for the city. The function
max(.,.) returns the maximum value among its arguments,
which is used here to threshold the negative velocities to a
very small positive number ¢, =0.0001.

8. For each IWD, update the soil of the path traversed by
that IWD using the following formulas:

soil(i, j) = (- p).soil(i, j)— p . Asoil (i, j)

soil P =s0illWD+Asoil(i,j)

“4)

where soil"P represents the soil that the IWD carries. The
IWD goes from city i to city j. The parameter p is a small

positive number less than one. Here we use p=0.9.

9. For each IWD, complete its tour by using steps 4 to 8
repeatedly. Then, calculate the length of the tour Tour'"”
traversed by the IWD, and find the tour with the minimum
length among all IWD tours in this iteration. We denote this

minimum tour by 7, .
10. Update the soils of paths included in the current
minimum tour of the IWD, denoted by 7, :

2.s0il P

—— VG, j))eT
NC(NC—l) (l’])e M

soil(i, j)=(1-p).soil(i, j)+p.
(%)

11. If the minimum tour T, is shorter than the best tour
found so far denoted by T , then we update the best tour by
Ty =T, and Len(Ty)= Len(T),) (6)
12. Go to step 2 unless the maximum number of iterations
is reached or the defined termination condition is satisfied.
13. The algorithm stops here such that the best tour is kept
in T and its lengthis Len(Ty).

It is reminded that it is also possible to use only 7,, and

remove step 11 of the IWD algorithm. However, it is safer
to keep the best tour 7 of all iterations than to count on

only the minimum tour 7, of the last iteration.
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V. EXPERIMENTAL RESULTS

In this section, we test the proposed intelligent water
drops for solving the TSP. At first, artificial problems are
generated and tested by the IWDs. Then, some standard TSP
problems are used for evaluating the performance of the
IWDs.

The cities of the artificial problems are points on a circle
which are equally spaced. Each point on the perimeter of the
circle represents a city in the TSP. The first experiment
involves 30 cities on the circle. The initial parameters of the
IWD algorithm are set according to the steps 1 and 2 of the
algorithm. At the initial, each link between two cities has the
same amount of soil denoted by /[nitSoil. As the time
passes, the links will have different amount of soils and the
algorithm prefers links with less soil to links with more soil.
The Intelligent Water Drops are randomly spread over the
cities. In this experiment, we use 30 IWDs. Therefore, the
number of cities and the number of IWDs are equal here.

Fig.1(a) shows the best tour found by the IWDs after one
iteration for the TSP problem with 30 cities on the circle.
When all IWDs complete one complete tour of themselves
in the proposed algorithm, we say one iteration of the
algorithm has been passed. In the algorithm, the best tour
found so far is always kept. The best tour at some other
iterations are also shown in Figs. 1(b)-(f) after two, three,
four, five, and 12 iterations, respectively. After 12 iterations,
the algorithm converges and no change in the best tour (the
same as the minimum tour in this experiment) is observed.
In fact, the global optimum tour has been found by the
IWDs for this TSP problem.

For this experiment, the length of the best tour versus the
iteration is shown in Fig. 2. As it is seen, it converges with a
sharp descending curve to the global optimum.

However, it is not always guaranteed that the global
optimum is found in each run of the algorithm. Sometimes
the algorithm falls into a good local optimum. The next
experiment shows such a good local optimum. To make it
more visible, we use fewer cities on the circle and run the
algorithm for a 10-city problem several times to reach a case
in which the algorithm doesn’t reach the global optimum
and falls into a local optimum. Such a case is shown in Fig.
3 in which we see a small self-crossing in the best tour
obtained by the algorithm. The algorithm converges to this
local optimum after four iterations. However, this local
optimum does not usually occur for the algorithm.
Moreover, this local self-crossing can be removed by some
simple heuristics [9].

Another experiment is with 100 cities located on the
perimeter of the circle. This experiment is to test the ability
of the IWD algorithm in dealing with more cities. Four best
tours obtained by the IWD algorithm are shown in Fig. 4 for
first, second, fifth, and 13th iterations. The algorithm
converges at the 13th iteration with the length 320. The
global optimum tour has the length 314 and is very close to
the tour length obtained by the algorithm. The tour found by
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the IWD algorithm is a very good local optimum. As Fig. 4
shows the converged tour has no self-crossing in the middle
of the circle. Therefore, only small self-crossing happens in
local neighborhood of cities, which again can be removed by
some appropriate local heuristics.

Fig. 5 shows the relation of the length of the minimum
tour versus its iteration obtained by the IWD algorithm for
the 100-city problem of Fig. 4. Almost all parts of the curve
is descending, except for the iteration 8 which shows a slight
increase in the length of minimum tour in contrast to its
previous iteration. However, after this short ascending, the
curve follows its general downward movement. This
property demonstrates that the proposed IWD is able to go
upward to get rid of some local optimum in order to get to
better optimums. This property makes the proposed
algorithm more appealing. We see such a property in some
other strong optimization algorithms such as simulated
annealing and genetic algorithms.

In the following, the proposed IWD algorithm is tested by
some standard TSP problems [10]. The eil51 problem is a
51-city problem with the known optimum tour length 426.
The IWD algorithm is tested with eil51 and it gives the
average tour length 470 over 10 runs. An example run of the
algorithm for eil51 is shown in Fig. 6 after one, two, 15, and
50 iterations. The IWD algorithm finally gets to the
optimum length 471 which is close to the global optimum
tour with the length 426.

The TWD algorithm is also tested by eil75 and kroA100
which are 75-city and 100-city TSP problems, respectively.
The converged tours for eil75 and kroA100 obtained by the
IWDs are shown in Figs. 7 and 8, respectively. The
algorithm obtains a tour with the length 559 after 300
iterations in contrast to the length 538 of the global optimum
tour of eil75. Moreover, the IWD algorithm reaches to the
tour with the length 23156 after 1500 iterations which the
result tour is close to the length 21282 of the global
optimum tour of kroA100.

To become sure that the results obtained by proposed
IWD algorithm in the aforementioned experiments are not
found by chance, we develop some experiments here to
statistically demonstrate the reproducibility and power of the
algorithm in finding at least good local optimums. The
problem of Fig. 4 is used here in which we have 100 cities
on a circle. We apply the IWD algorithm to that problem for
20 independent runs. In each run, the algorithm is continued
for 50 iterations and then the best tour length is identified.
As shown in Fig. 9, in each run of the IWD algorithm, the
best tour length is close enough to the global optimum tour
length 314.10 denoted by the dotted line.

Now, we examine the performance of the IWD algorithm
as the problem size increases. The cities are considered to be
on a circle but the number of cities is increased by five from
10 to 100. For each case, the IWD algorithm runs 10 times
and the average best tour length is calculated. These average
best tour lengths versus the number of cities of the TSP are
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depicted in Fig. 10. The dotted lines show the global
optimum tour length whereas the solid lines show the
average best tour lengths. It is seen that the IWD algorithm
performs so well in reaching close enough to the global
optimums no matter how big are the size of the problems.

It should be mentioned that the IWD algorithm converges
fast and needs moderate or few iterations to converge to
good optimum solutions in comparison to other optimization
algorithms [11]. Moreover, each iteration of the IWD
algorithm is computationally light.

If we look at the ant colony based algorithms [11], we see
that the ants change the pheromone deposits on the paths
they travel. Every ant leaves a certain amount of pheromone
in each path it follows. A similar role is played in the
proposed IWD algorithm by the water drops. The amounts
of soils are changed by the water drops. However, in
contrast to the ants, these changes are not constant and are
dependent on the velocity and soil of the water drop
traversing the path. Moreover, the water drops may have
different velocities whereas in ant colony based algorithms
the speeds of ants are not considered.

VI. CONCLUSION

Some properties that exist in natural water drops flowing
in rivers are adopted in an algorithm here for solving
optimization problems. In this paper, the proposed IWD
algorithm is designed to solve the TSP. The IWD algorithm
is experimented by artificial and some benchmark TSP
environments. The proposed algorithm converges fast to
optimum solutions and finds good and promising results.
This research is the beginning of using water drops ideas to
solve engineering problems. So, there is much space to
improve and develop the IWD algorithm.
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Fig. 1. The best tours found using the proposed IWD algorithm for a 30 city
TSP problem. (a) The best tour after one iteration. (b) The best tour after
two iterations. (¢) The best tour after three iterations. (d) The best tour after
four iterations. (¢) The best tour after five iterations. (f) The best tour after
12 iterations which in fact is the global optimum tour in this case.
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Fig. 2. The length of the best tour (or the minimum tour) versus the iteration
which is found by the IWD algorithm for the 30-city problem of Fig.1.
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Fig. 3. An example of a case in which the proposed IWD converges to a
good local optimum. It is seen a small self-crossing in the best tour obtained
by the algorithm for the 10-city TSP problem.

© (d)

Fig. 4. The best tours found using the proposed IWD algorithm for a 100
city TSP problem. (a) The best tour after one iteration. (b) The best tour
after two iterations. (c) The best tour after five iterations. (d) The best tour
after 13 iterations which is the tour that the algorithm converges to with the

total tour length 320. This length is very close to the global optimum tour
length 314.
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Fig. 5. The length of the minimum tour versus the iteration found by the
IWD algorithm for the 100-city problem of Fig. 4. The algorithm converges
to a very good local optimum. A slight upward movement at iteration 8

reveals that the algorithm can jump out of some local optimums to move to
better optimums hopefully to the global optimum.
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Fig. 6. The best tours found using the proposed IWD algorithm for the 51-
city TSP problem eil51. (a) The best tour after one iteration. (b) The best
tour after two iterations. (c) The best tour after 15 iterations. (d) The best
tour after 50 iterations which is the tour that the algorithm converges to with
the total length 471. This length is quite close to the global optimum tour
length 426.

Fig. 7. The best tour found by the proposed algorithm after 300 iterations
for the 76-city problem eil76. The algorithm gets a good local optimum with
the tour length 559 which is quite close to the global optimum 538.

Fig. 8. The best tour found by the proposed algorithm after 1500 iterations
for the 100-city problem kroA100. The algorithm gets a good local optimum
with the tour length 23156 which is quite close to the global optimum
21282.
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Fig. 9. The length of best tour of the IWD algorithm in 20 independent runs
after 50 iterations for the 100-city problem of Fig. 4. The global optimum
tour length is 314.10 and is shown by the dotted line. As it is seen, the tour
lengths of the proposed algorithm denoted by the solid lines are mostly very
close to the shortest tour length.
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Fig. 10. The average length of the best tours of the IWD algorithm in 10
independent runs for the TSP problems in which the cities are on a circle.
The number of cities is increased from 10 to 100 by the value of five, and in
each case the best average tour length over 10 runs is depicted. The dotted
lines show the global optimum tour length whereas the solid lines are the
best tour lengths obtained by the IWD algorithm.
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