
Fast Global Optimization of Di�cult Lennard-JonesClustersMarco Locatelli (locatell@di.unito.it)Dipartimento di InformaticaUniversit�a di TorinoCorso Svizzera, 18510149 Torino (Italy)Fabio Schoen (schoen@ingfi1.ing.unifi.it)Dipartimento di Sistemi e InformaticaUniversit�a di Firenzevia di Santa Marta, 350139 Firenze (Italy)Abstract. The minimization of the potential energy function of Lennard-Jonesatomic clusters has attracted much theoretical as well as computational researchin recent years. One reason for this is the practical importance of discovering low-energy con�gurations of clusters of atoms, in view of applications and extensionsto molecular conformation research; another reason of the success of Lennard Jonesminimization in the global optimization literature is the fact that this is an extremelyeasy-to-state problem, yet it poses enormous di�culties for any unbiased globaloptimization algorithm.In this paper we propose a computational strategy which allowed us to rediscovermost putative global optima known in the literature for clusters of up to 80 atomsand for other larger clusters, including the most di�cult cluster conformations.The main feature of the proposed approach is the de�nition of a special purposelocal optimization procedure aimed at enlarging the region of attraction of the bestatomic con�gurations. This e�ect is attained by performing �rst an optimization ofa modi�ed potential function and using the resulting local optimum as a startingpoint for local optimization of the Lennard Jones potential.Extensive numerical experimentation is presented and discussed, from which it canbe immediately inferred that the approach presented in this paper is extremelye�cient when applied to the most challenging cluster conformations. Some attemptshave also been carried out on larger clusters, which resulted in the discovery of thedi�cult optimum for the 102 atom cluster and for the very recently discovered newputative optimum for the 98 atom cluster.Keywords: Global Optimization, Lennard-Jones clusters, Molecular Conformation1. IntroductionOne of the simplest to describe yet most di�cult to solve problemsin computational chemistry is the automatic determination of molecu-lar conformation. A molecular conformation problem can be describedc
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2 Preprint: not to be quoted without explicit permissionas that of �nding the global minimum of a suitable potential energyfunction which depends on relative atom positions. Many models havebeen proposed in the literature, ranging from very simple to extremelycomplex, like, e.g., the so-called protein folding problem (Neumaier,1997). While realistic models of atomic interactions take into accountdi�erent components of the potential energy function, like pairwise in-teractions, dihedral angles, torsion, and allow the analysis of compositemolecules in which atom of di�erent kinds interact, it is commonlyrecognized in the chemical literature that a fundamental step towardsa better understanding of some molecular conformation problems isthe knowledge of the global minimum of the so called Lennard-Jonespotential energy model; this model is a su�ciently accurate one fornoble gas clusters. Moreover some of the most di�cult to �nd Lennard-Jones structures, exactly those towards which this paper is oriented,were found to represent very closely the structure of nickel and goldclusters (Wales and Scheraga, 1999).In this model all atoms are considered to be equal and only pairwiseinteraction is included in the de�nition of the potential energy. LetN �2 be an integer representing the total number of atoms. The Lennard-Jones (in short L-J) pairwise potential energy function is de�ned asfollows: if the distance between the centers of a pair of atoms is r, thentheir contribution to the total energy is de�ned to bev(r) = 1r12 � 2r6 (1)and the L-J potential energy E of the molecule is de�ned asE(X) = E(X1; : : : ; XN) =Xi<j v (kXi �Xjk) (2)where Xi 2 IR3 represents the coordinates of the center of the i{thatom and the norm used is the usual Euclidean one. An optimum L-J con�guration X? = fX?1 ; : : : ; X?Ng is de�ned as the solution of theglobal optimization problemLJN = E(X?) = minX2IR3N E(X): (3)Although extremely simpli�ed, this model has attracted researchin chemistry and biology, as it can be e�ectively considered as a rea-sonably accurate model of some clusters of rare gases and as it repre-sents an important component in most of the potential energy modelsused for complex molecular conformation problems and protein folding(Neumaier, 1997). LJPAPER.tex; 13/01/2000; 10:31; p.2



Preprint: not to be quoted without explicit permission 3From the point of view of numerical optimization methods, thisproblem is an excellent test for local and global unconstrained optimiza-tion methods; it is one of the simplest models in the literature of testproblems (see e.g. Floudas and Pardalos, 1999 pag. 188{193), yet oneof the most di�cult as it has been conjectured (Hoare, 1979) that thenumber of local optimum conformations grows at least exponentiallywithN . Many computational approaches can be found in the literature,ranging from mathematical programming models (Gockenbach et al.,1997), to genetic methods (Deaven et al., 1996), to Montecarlo sampling(Wales and Doye, 1997) and many others. For a recent review of thestate of the art in this subject, the reader may consult (Wales andScheraga, 1999).Unfortunately very few theoretical results are available which couldbe used to tune an optimization method for the L-J minimizationproblem. One notable exception is the result of (Xue, 1997) where it isproven that in any global optimum the pairwise interatomic distanceis bounded from below by 0:5: while this result is considered obviousin the chemical literature, only recently it has been proven in a formalway. Very little is a-priori known on the structure of the global optima;even a quite reasonable conjecture stating that the diameter of anoptimum N{atoms cluster is O(N1=3) is still open. Thus, except forextremely small and easy cases, there are no proofs of global optimalityfor the putative global optimum con�gurations known in the litera-ture (see the L-J page on the Cambridge Clusters Database at URLhttp://www.brian.ch.cam.ac.uk). All published results are aimed atcon�rming, through experimentation, numerical results known in theliterature or at improving current estimates of the global optima.Despite the complexity of the problem, most putative global optimaof micro-clusters (with up to 147 atoms) have been discovered by meansof a very simple and e�cient algorithm �rst proposed in (Northby, 1987)and further re�ned in (Xue, 1994), which is based on the idea of startinglocal optimization from initial con�gurations built by placing atomsin prede�ned points in space, according to lattice structures whichresearchers in chemistry and physics believe are the most common onesfound in nature. However quite a few exceptions to regular lattice-basedstructures do exist; these structures are extremely di�cult to discoverwith general purpose methods. It is to be remarked that new optimaare still being discovered, even though at a slower rate than just afew years ago. In August 1999, for example, a new con�guration forLJ98 was discovered (Leary and Doye, 1999) and possibly other newrecords will appear even in the range N � 147 which has been the mostthoroughly and extensively studied in the last decade.
LJPAPER.tex; 13/01/2000; 10:31; p.3



4 Preprint: not to be quoted without explicit permissionIn this paper we propose a new methodology aimed at discoveringthe most di�cult structures for Lennard-Jones clusters. Our main aimis not to introduce a general purpose method, but that of de�ning anew strategy for local searches which can be pro�tably included in anyalgorithm which is based on local searches, including the basin-hoppingmethod (Wales and Doye, 1997), the big-bang method (Leary, 1997),Leary's descent method (Leary and Doye, 1999) or genetic algorithms(see (Deaven et al., 1996), (Pullan, 1999)). Our method consists in amodi�cation of the objective function, in the �rst phase of the descent,which enables a local search algorithm to escape from the enormousnumber of local optima of the L-J energy landscape; implemented in astraightforward Multistart-like method, our modi�cation improved byat least two order of magnitude the number of local searches required to�nd the di�cult 38 and 75 atom cases and could �nd the new 98 atomcluster and the di�cult 102 case in less than 10 000 local searches.In a series of runs the LJ38 optimum was discovered in 56% of thelocal searches performed, an incredible performance if compared withthe best result published so far in which LJ38 is found in 0.3% of theattempts (Leary, 1997). In our �rst attempt to attack the LJ98 case,which was discovered only in summer 1999 (Doye et al., 1999a) using\millions of local searches" (Anonymous, 1999), we were able to �ndthe global optimum in less than 10 000 local searches, on average.2. A new approach to the detection of Lennard-JonesclustersWe consider Multistart-like approaches to the problem of globally mini-mizing the Lennard-Jones potential function. The pure Multistart methodcan be described as follows.Pure Multistart1. Generate a point X 2 IR3N from the uniform distribution overa su�ciently large box centered at the origin;2. perform a local search in IR3N using X as a starting point;3. if a stopping condition is not satis�ed, go back to 1, otherwisereturn the local minimum with the lowest function value.Of course, we can not expect Pure Multistart to be a feasible methodfor the solution of the Lennard-Jones problem. Indeed, even though thedi�culty of solving a global optimization problem by Multistart is notLJPAPER.tex; 13/01/2000; 10:31; p.4



Preprint: not to be quoted without explicit permission 5actually related to the number of local minima, but to the measure ofthe basin of attraction of the global minimum, the fact that the numberof local minima is exponentially large is a clear indication that Multi-start may experience great di�culties in solving this kind of problems.Numerical computations tend to con�rm this fact. In Table I we noticethat Pure Multistart (PMS) applied to problems with N 2 f10; : : : ; 30gfails to detect the putative global optimum for N = 21; 27; 28; 29 after1 000 trials and has very low percentage of successes for many othervalues of N .Therefore, it seems necessary to modify the basic Multistart schemein order to be able to solve larger problems. A simple idea is to ex-ploit the special structure of the Lennard-Jones potential function andmodify the search mechanism accordingly. Looking at the form of thepairwise interaction function (1) we notice that good solutions shouldpossess some or all of the following characteristics:� atoms should not be too close each other (also recalling the resultin Xue, 1997);� the distance between many pairs of atoms should be close to 1.0,since at 1.0 the Lennard-Jones pair potential attains its minimum;� the optimal con�guration should be as compact as possible, i.e.the diameter of the cluster should not be too large.According to these elementary observations, it is possible to sub-stitute the uniform random generation of points (Step 1 in the PureMultistart method) by a generation mechanism which tends to favorpoint con�guration possessing the above characteristics. As a �rst at-tempt in this direction we substituted the uniform random generationprocedure with the following:Point Generation Procedure1. Start with a single atom placed in the origin, i.e. let X1 = 0 2IR3; set X = fX1g and k = 2.2. Generate a random direction d 2 IR3 and a point Xk alongthis direction in such a way that its minimum distance r fromevery point in X is at least 0:5.3. If r is greater than a threshold R > 1 thenXk is shifted towardsthe origin along direction d, until its distance from at least onepoint in X becomes equal to R.LJPAPER.tex; 13/01/2000; 10:31; p.5



6 Preprint: not to be quoted without explicit permission4. Set X = X [ fXkg. If k = N , stop; otherwise set k := k + 1and go back to Step 2.This di�erent point generation procedure slightly improves the per-formance of Multistart as it can be seen from Table I where the resultsof Multistart equipped with this generation algorithm are displayedunder the heading MMS (Modi�ed Multistart); however even this modi-�ed algorithm soon starts failing in detecting the putative global optimaof moderately large clusters.Table I. Number of successes in 1000 ran-dom trials by Pure Multistart (PMS) andModi�ed Multistart (MMS) methods.N PMS MMS N PMS MMS11 32 36 21 - -12 24 53 22 1 313 19 32 23 1 514 45 91 24 1 515 34 73 25 2 316 12 34 26 1 -17 3 9 27 - 118 1 1 28 - -19 3 6 29 - -20 3 7 30 1 -It might be possible to re�ne further the Point Generation Pro-cedure in order to produce better starting points, but it is felt thatno real breakthrough can be achieved in this direction. It seems morereasonable to attack the problem by changing another component ofthe Multistart method, i.e. the local search procedure; we are thusled to search for a local optimization method which avoids as muchas possible being trapped in stationary points of the Lennard-Jonespotential characterized by a high value of the potential energy (2). Theidea is that of performing local searches employing a modi�ed objectivefunction which, although related to the Lennard-Jones potential, is insome sense \biased" towards con�gurations which satisfy the aboverequirements. The local minimum of this modi�ed potential is thenused as a starting point for a local optimization of the Lennard-Jonespotential function. This leads to the following version of the Multistartmethod. LetME(X) be a suitably de�ned modi�ed potential function.Two-Phase Multistart LJPAPER.tex; 13/01/2000; 10:31; p.6



Preprint: not to be quoted without explicit permission 71. Generate a point X 2 IR3N according to the Point GenerationProcedure;2. perform a local minimization of the modi�ed potential functionME in IR3N using X as a starting point; let X̂ be the localoptimum thus obtained;3. perform a local optimization of the Lennard-Jones potential (2)starting from X̂;4. if a stopping condition is not satis�ed, go back to Step 1; oth-erwise return the local minimum of E with the lowest functionvalue.We notice that, in place of the usual local search of the Pure orModi�ed Multistart method, here we have what we call a two-phaselocal search: �rst the function ME is optimized, and then the Lennard-Jones potential E. We underline that, even if at each iteration two localsearches are started, the computational e�ort is not doubled: indeed,the local minimum X̂ ofME is typically quite close to a local minimumof E, so that the computational e�ort of the second local search is muchlower than that of the �rst one.Accordingly we need now to de�ne ME in such a way that the localminima of this function possess the desired characteristics. In whatfollows two classes of functions, among which ME can be chosen, areintroduced. The �rst class contains functions with the following formXi<j g (kXi �Xjk) ; (4)where g(r) = 1r2p � 2rp + �r: (5)Here p > 0 and � � 0 are real constants; we note that choosingp = 6 and � = 0, g coincides with the Lennard-Jones pair potential (1).In Figure 1 the case p = 4 and � = 0:3 is displayed and comparedwith the Lennard-Jones pair potential. The parameters p and � haveimportant e�ects. By choosing p < 6 atoms can be moved more freely;by decreasing p, the e�ect of the in�nite barrier at r = 0:0, whichprevents atoms from getting too close to each other, is also decreased.The parameter � has two important e�ects.Local e�ect : it gives stronger penalty to distances between atomsgreater than 1.0; actually, it also assigns low penalty for pair dis-tances lower than 1.0, but this is largely overcome by the barriere�ect which, as already remarked, prevents atoms from getting tooclose each other. LJPAPER.tex; 13/01/2000; 10:31; p.7
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Figure 1. Comparison between Lennard-Jones and Modi�ed potentials.Global e�ect : it gives strong penalty to large distances betweenatoms, e.g. to the diameter of the molecule.In order to test the feasibility of this approach, a series of numericalexperiments have been performed by running 10 000 times the algo-rithm for N = 10; :::; 80. As these experiments were carried out onPentium II PC's, we did not performed extensive and generalized trialsfor N > 80. In Table II the number of two-phase local searches whichled to the putative global optimum are reported. We notice that thepercentage of successes is much higher than the one of the Pure orModi�ed Multistart algorithm. In particular, two important cases arediscussed. The �rst case is N = 38, which is considered in the literaturea particularly di�cult one (Doye et al., 1999a). While most putativeglobal optima in the range f10; : : : ; 80g have a so called icosahedralstructure, the putative global optimum for N = 38 has a FCC (FaceCentered Cubic) structure, and many algorithmic approaches, such asthe lattice search in (Northby, 1987) and (Xue, 1994), biased towardsicosahedral structures, are unable to detect this solution. The newputative global optimum was �rst observed only recently in (Doyeet al., 1995) using a direct approach based on molecular dynamics; morerecently, in (Leary, 1997) the putative global optimum was found usingthe \big bang" global optimization algorithm employing on the average330 local searches, while for the basin hopping algorithm proposed inLJPAPER.tex; 13/01/2000; 10:31; p.8



Preprint: not to be quoted without explicit permission 9(Wales and Doye, 1997), the expected number of local searches requiredto �rst hit this putative global optimum is 2 000. In the new approach,choosing p = 4 and � = 0:3, the expected number of local searches isreduced to 80, but, with the method described later in this paper, wewere able to obtain the incredible hitting rate of 1.79 local searches onthe average.As it can be observed from Table II, although quite successful forsome con�gurations, our method fails in several cases; most notablyit does not discover, at least in the �rst 10 000 local searches, thedi�cult structure of LJ75. This case is the second hard case in therange f10; : : : ; 80g and it is much harder than the N = 38 case (inorder to appreciate the di�culties of both cases see the discussion aboutmultiple funnel landscapes in (Doye et al., 1999b)). As for N = 38, thestructure of the putative global optimum is non icosahedral (actuallythe structure is a decahedral one). The putative global optimum hasbeen detected for the �rst time in (Doye et al., 1995); by employingthe Basin Hopping algorithm the reported expected number of localsearches to �rst detect this con�guration is over 100 000. Thus ourfailure in detecting LJ75 during the �rst 10 000 local searches was nota surprise.However, instead of insisting with an higher number of local searches,a modi�cation of (5) was introduced in order to strengthen the globale�ect. This lead to the following class of modi�ed functions:Xi<j h (kXi �Xjk) ; (6)where h(r) = 1r2p � 2rp + �r + �(maxf0; r2�D2g)2; (7)where p; �; �;D � 0; D is an underestimate of the diameter of thecluster. In Figure 2 the case p = 4; � = 0:2; � = 1; D = 2 is displayedand compared with the Lennard-Jones pair potential function. We no-tice that the penalty term �(maxf0; r2 � D2g)2 has no in
uence onpairs of atoms close to each other, but strongly penalizes atoms faraway from each other. Thus, the new term does not a�ect the localproperties, but strengthens the global ones. The results for this class ofmodi�ed functions are reported in Table III. In particular, we note thefollowing results for the two di�cult, non icosahedral cases, obtainedwith suitable choices of the parameters.� For N = 38 the expected number of (two-phase) local searches to�rst hit the putative global optimum is 100001831 = 5:46, more than 60times faster, in terms of local searches performed, than Big Bangand 366 faster than Basin Hopping;LJPAPER.tex; 13/01/2000; 10:31; p.9
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Figure 2. Comparison between Lennard-Jones and modi�ed potentials with diame-ter penalization.� for N = 75 the expected number of local searches is 3 333, whileit was 125 000 for the Basin Hopping algorithm: the improvementfactor is thus more than 37.Given the results of N = 75, a better explanation of the failureof our �rst approach can be given, supported by the observation ofthe structure of the optimal decahedral structure (see Figure 3) andicosahedral structure (see Figure 4).In the best icosahedral structure the number of pairs of atoms whichare within distance close to 1.0 is 328, higher than what observed inthe optimal decahedral structure (319 pairs). In some sense, the icosa-hedral structure has better local properties than the decahedral one.However, this local disadvantage is compensated by the compactnessof the decahedral structure with respect to the icosahedral one: thediameter of the decahedral structure is quite lower than the diameter ofthe icosahedral one. Moreover, thanks to the compact structure, manypairs of atoms in the decahedral structure have a distance which isequal to the diameter (10 pairs in total, while the icosahedral structurehas only 2). In some sense we can say that the decahedral structurehas better global properties than the icosahedral one. In view of thiscomparison, it is now possible to understand the failure for N = 75when (5) is employed. The linear penalty term �r has, as alreadyLJPAPER.tex; 13/01/2000; 10:31; p.10
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Figure 3. Putative optimum for LJ75remarked, a double e�ect: a local e�ect, rewarding solutions with goodlocal properties (like the icosahedral structure), and a global e�ect,rewarding solutions with good global properties (like the decahedralstructure). What appears to happen for N = 75 is that the local e�ectdominates the global one, thus favoring the icosahedral structure withrespect to the decahedral one.Even though complete computations have been performed only up toN = 80, the new approach has been tested for two other di�cult cases,for which the putative global optimum is known to be not icosahedral.� Very recently in (Leary and Doye, 1999) a new, non icosahedral,putative global optimum for N = 98 has been detected, display-ing a very compact structure; it is reported that this discoveryrequired \millions of local searches" (Anonymous, 1999); our newapproach could detect this solution within 10 000 local searches onthe average.� In (Wales and Doye, 1997) a non icosahedral putative global opti-mum for N = 102 has been detected. The new approach was ableLJPAPER.tex; 13/01/2000; 10:31; p.11



12 Preprint: not to be quoted without explicit permission

Figure 4. Icosahedral optimum for LJ75to detect this solution within 10 000 local searches, while the BasinHopping algorithm could detect the same solution only 3 times outof 500 000 local searches.In other series of experiments with di�erent parameter settings some-times better results were found. As a particularly signi�cative instance,for LJ38 with parameters p = 5; � = 0:; D = 2:25; � = 1: the incredibleresult of 56% successes was recorded in 1000 random trials. In practicethis means that, with such a parameter setting, the FCC structure ofLJ38 can be observed after a fraction of a second of CPU time on anormal personal computer.2.1. Limits of the proposed approachIt is fair to consider the limits of the proposed approach and possibleways to overcome them. The main limits of the approach can be seenfrom the tables. We notice that for N > 60 in many cases the putativeglobal optimum could not be detected. It is not possible to claim thatour new approach is a general one to solve problems for any value of N .LJPAPER.tex; 13/01/2000; 10:31; p.12



Preprint: not to be quoted without explicit permission 13What can be safely assumed is that it is an extremely successful methodin detecting those structures which di�er from the icosahedral one;this is particularly important as it is believed that when the numberof atoms N is large, compact, non-icosahedral structures prevail. Formost tested value of N for which the optimal structure is known tobe non icosahedral (N = 38; 75; 76; 77; 98; 102) our method is muchfaster (up to two orders of magnitude) than any other approach foundin the literature. It must be again underlined that, in the literature,these cases are considered by far the most di�cult ones. However, theapproach is not able to detect in an e�ective way some of the optimalicosahedral structures. In order to detect these optimal structures itis possible to incorporate the two-phase local search on which thenew approach is based into some of the approaches proposed in theliterature such as the Basin Hopping algorithm: the rationale behindthis is that it appears that the use of our modi�ed potential, two-phaselocal optimization actually enlarges the region of attraction of globaloptima. In this respect, the choice of imposing a very low penalty onthe diameter should be considered safer, as the e�ect of this penaltyis usually so strong that only very compact structures are e�ectivelyfound (most micro clusters are indeed non compact).An approach based on a forward procedure followed by a correctionprocedure, has been tried, which enabled us to detect all the solutionswhich could not be detected by the previous approach. The forwardprocedure is already known in the literature and consists of starting theoptimization of LJN from a good con�guration of LJN�1, adding �rst asingle atom and then optimizing the overall potential; we implementeda variant which incorporates the two-phase local search in place ofthe regular local optimization. The correction procedure, starting fromthe best local optimum found, is based upon the displacement of twoatoms randomly chosen among those with highest energy contributioninto a di�erent position, followed by the usual two-phase optimization.Details on these procedures can be found in (Locatelli and Schoen,1999), where it is shown that all those con�gurations which could notbe observed through our two-phase Multistart method can be obtainedby these more specialized methods.Another critic to the proposed approach is the di�culty of choosingsensible values for the parameters. Again it has to be remarked thatthere is no general rule to choose a set of parameters which is su�cientlygood for a whole range of clusters. The main reason for this is that, asit has already been remarked, cluster structures vary abruptly aroundsome \magic numbers", like N = 38; 75; 98; 102.In an attempt to �nd general rules, we performed other experiments,using the following parameters: p = 5 (which is an intermediate value
LJPAPER.tex; 13/01/2000; 10:31; p.13



14 Preprint: not to be quoted without explicit permissionbetween 4 and 6 used in previous experiments), � = 1; parameter D,which governs the threshold for diameter penalization, was chosen asa function of N , based upon a regression on the diameters of putativeglobal optima. In particular we chooseD = 3p1:3N � 6:5� 1:1 (8)where the term 3p1:3N � 6:5 comes from a regression analysis of thediameters of putative global optima, while 1.1 is included to force verycompact structures during the �rst phase. Two sets of experiments werecarried out choosing respectively � = 0 and � = 0:1 in (7). The resultsof these experiments are not reported here for sake of brevity, but canbe obtained through the web page of the second author. Again, withthese parameter settings, di�cult clusters are found within a numberof local searches which is comparable with the results obtained in theother numerical experiments we made; some clusters are found withmuch greater e�ciency using the automatic diameter penalization. Forexample, clusters with N = 11; 12; 13; 14 are generally found in morethan 98% of the trials (only LJ12 was found in 93% of the trials).LJ38 is found (with � = 0:1) 4 517 times in 10 000 trials, LJ51 1 004times, LJ75 2 times, and so on; however the automatic diameter choicedoes not permit to �nd easy clusters like, e.g., LJ15, which could befound easily without penalty on the diameter; this fact should not beconsidered a failure of the method: it should be observed that thesekind of structures are not particularly spherical, and are thus muchmore easily detected without imposing any penalty on the diameter.Moreover the regression on diameters we used to set the automaticvalue was obtained from the diameters of molecules with more than 20atoms and for low values of N the resulting penalty on the diameter isexcessive. 3. Conclusions and further research issuesWhat we think is the main result presented in this paper is not anoriginal algorithm, although a very e�cient method has been analyzedand its performance discussed. The major contribution of this paper isthe de�nition of a new local search strategy, composed of two phases,the �rst of which is built in such a way as to pass over non interestinglocal minima. Moreover, this local search promises to be very well suitedfor general approaches for the Lennard-Jones and similar problemsin molecular conformation studies; in this paper it was shown howthe most di�cult con�gurations for the Lennard-Jones cluster prob-lem can be discovered with much greater e�ciency by using a simpleLJPAPER.tex; 13/01/2000; 10:31; p.14



Preprint: not to be quoted without explicit permission 15Multistart algorithm in which our two-phase local search is used inplace of a standard descent method. Some experiments have alreadybeen performed to see if this two-phase local optimization might beuseful when substituted in place of a standard local search in a morere�ned method. Our �rst results with forward and correct methods areextremely encouraging.In any case, already from the results presented here it is possible toinfer that the penalties and rewards included in the �rst phase optimiza-tion succeed in driving the optimization close to very good, compactclusters, avoiding being trapped in local optima which for a regular localsearch method display very large regions of attraction. The structures ofoptimal Lennard-Jones clusters are so radically di�erent in some casesthat it seems quite unreasonable to look for general purpose methodscapable of discovering all optima in reasonable computer times. Ourapproach greatly reduces the computational e�ort required to discoverwhat are commonly accepted as the most di�cult con�gurations. It ishoped that, when applied to larger clusters, this method will succeed in�nding better putative global optima. Of course, in case of much largerclusters, the problem arises of e�ciently computing the potential aswell as the penalized functions and gradients. Using a naive approach,these computations require O(N2) distances to be evaluated for eachiteration during local optimization; for large values ofN this cost mightbe prohibitively large. In order to cope with the curse of dimensionality,it is planned in the next future to explore the possibility of parallelizingenergy computations; another possibility, which we did not explore upto now, might be that of using faster approximate potential calcula-tion, based on approaches similar to the one described in (Hingst andPhillips, 1999).4. Appendix: details on the computational experimentsAll of the experiments have been performed either on 266Mhz Pen-tium II Personal Computers or on a Sun Ultra 5 Workstation. Forlocal optimization a standard conjugate gradient method was employedand, in particular, the implementation described in (Gilbert and No-cedal, 1992) was used with standard parameter settings. For everychoice of the parameters, we ran random 10 000 trials. Experimentsperformed with di�erent parameter settings, like those in tables 1 and2, were conducted using the same seeds for the random generationmechanism. That is, common random numbers were used for di�er-ent experiments: this way, in particular for those instances in which�nding the global optimum is a rare event, a comparison betweenLJPAPER.tex; 13/01/2000; 10:31; p.15
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18 Preprint: not to be quoted without explicit permissionTable II. Number of successes in 10 000 trials without diameter penalizationN p = 4� = 0:1 p = 4� = 0:3 p = 6� = 0:3 N p = 4� = 0:1 p = 4� = 0:3 p = 6� = 0:310 1775 2609 899 46 15 5 211 3289 4321 1475 47 28 22 1212 5855 7513 2436 48 6 6 1613 6379 8200 2104 49 15 3 514 7761 8698 3933 50 1 2 315 1866 853 1740 51 100 130 2916 2381 2201 1050 52 87 133 9017 585 705 403 53 138 177 20818 1155 1977 249 54 95 122 19219 2631 3280 605 55 50 43 5920 3327 4389 833 56 124 149 14121 821 1193 309 57 2 2 322 2006 2541 644 58 - - 123 1592 2318 336 59 1 - 224 1909 2811 530 60 - - -25 2174 3202 827 61 - - 126 942 1938 243 62 - - -27 200 148 45 63 - 1 -28 417 367 101 64 - - -29 697 1166 105 65 - - -30 66 48 14 66 - - -31 68 53 21 67 - - -32 141 68 44 68 - - -33 104 164 45 69 - 1 -34 12 5 8 70 - - -35 29 18 20 71 - - -36 24 43 15 72 - - -37 9 8 12 73 - - -38 57 123 24 74 - - -39 32 12 20 75 - - -40 37 19 14 76 - - -41 4 2 8 77 - - -42 4 3 6 78 - - -43 11 6 4 79 - - -44 17 9 16 80 - - -45 16 3 10
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Preprint: not to be quoted without explicit permission 19Table III. Number of successes in 10 000 trials with diameter penalizationN D = 3p = 4�= 0:2 D = 3p = 6� = 0:2 D = 2p = 4� = 0:2 N D = 3p = 4�= 0:2 D = 3p = 6� = 0:2 D = 2p = 4� = 0:210 2686 1223 5172 46 - - 211 4138 1488 6259 47 - 1 412 7170 2254 9367 48 63 187 313 7858 2185 9931 49 - - 614 8571 3978 9881 50 2 5 615 1075 2230 - 51 58 206 9716 2214 1338 17 52 27 122 2317 803 540 - 53 13 131 21418 1851 333 - 54 4 103 2619 2580 477 19 55 4 40 220 3638 804 225 56 1 2 12821 1302 451 174 57 - - 422 2389 820 4 58 1 15 -23 2020 428 2854 59 - - -24 2753 968 854 60 - - 225 3459 1597 2191 61 - 4 -26 2191 564 6840 62 - - -27 52 10 - 63 1 - -28 235 58 - 64 - 2 -29 995 75 5 65 - - -30 42 3 - 66 - - -31 - 13 - 67 - - -32 3 3 - 68 - - -33 10 3 - 69 - - -34 - - - 70 - - -35 2 9 - 71 - - -36 6 2 - 72 - - -37 - - - 73 - - -38 437 887 1831 74 - - -39 - - 672 75 - 3 140 5 - 9 76 - 4 -41 - - 1 77 - 1 -42 - - 1 78 - - -43 - - 1 79 - 2 -44 - - 1 80 - 1 -45 - 1 2
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