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Abstract. The minmimization of the potential energy function of Lennard-Jones
atomic clusters has attracted much theoretical as well as computational research
in recent years. One reason for this is the practical importance of discovering low-
energy configurations of clusters of atoms, in view of applications and extensions
to molecular conformation research; another reason of the success of Lennard Jones
minimization in the global optimization literature is the fact that this is an extremely
easy-to-state problem, yet it poses enormous difficulties for any unbiased global
optimization algorithm.

In this paper we propose a computational strategy which allowed us to rediscover
most putative global optima known in the literature for clusters of up to 80 atoms
and for other larger clusters, including the most difficult cluster conformations.
The main feature of the proposed approach is the definition of a special purpose
local optimization procedure aimed at enlarging the region of attraction of the best
atomic configurations. This effect is attained by performing first an optimization of
a modified potential function and using the resulting local optimum as a starting
point for local optimization of the Lennard Jones potential.

Extensive numerical experimentation is presented and discussed, from which it can
be immediately inferred that the approach presented in this paper is extremely
efficient when applied to the most challenging cluster conformations. Some attempts
have also been carried out on larger clusters, which resulted in the discovery of the
difficult optimum for the 102 atom cluster and for the very recently discovered new
putative optimum for the 98 atom cluster.
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1. Introduction

One of the simplest to describe yet most difficult to solve problems
in computational chemistry is the automatic determination of molecu-
lar conformation. A molecular conformation problem can be described
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as that of finding the global minimum of a suitable potential energy
function which depends on relative atom positions. Many models have
been proposed in the literature, ranging from very simple to extremely
complex, like, e.g., the so-called protein folding problem (Neumaier,
1997). While realistic models of atomic interactions take into account
different components of the potential energy function, like pairwise in-
teractions, dihedral angles, torsion, and allow the analysis of composite
molecules in which atom of different kinds interact, it is commonly
recognized in the chemical literature that a fundamental step towards
a better understanding of some molecular conformation problems is
the knowledge of the global minimum of the so called Lennard-Jones
potential energy model; this model is a sufficiently accurate one for
noble gas clusters. Moreover some of the most difficult to find Lennard-
Jones structures, exactly those towards which this paper is oriented,
were found to represent very closely the structure of nickel and gold
clusters (Wales and Scheraga, 1999).

In this model all atoms are considered to be equal and only pairwise
interaction is included in the definition of the potential energy. Let N >
2 be an integer representing the total number of atoms. The Lennard-
Jones (in short L-J) pairwise potential energy function is defined as
follows: if the distance between the centers of a pair of atoms is r, then
their contribution to the total energy is defined to be

1 2

U(r):m—r?

(1)
and the L-J potential energy F of the molecule is defined as

E(X)ZE(le---vXN)ZZU(IIXFX]‘II) (2)

where X; € IR® represents the coordinates of the center of the i—th
atom and the norm used is the usual Euclidean one. An optimum L-
J configuration X* = {X7,..., X} } is defined as the solution of the
global optimization problem

LJy = E(X*)= min_ FE(X). 3
= B(X) = min B(X) ®)

Although extremely simplified, this model has attracted research
in chemistry and biology, as it can be effectively considered as a rea-
sonably accurate model of some clusters of rare gases and as it repre-
sents an important component in most of the potential energy models

used for complex molecular conformation problems and protein folding
(Neumaier, 1997).
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From the point of view of numerical optimization methods, this
problem is an excellent test for local and global unconstrained optimiza-
tion methods; it is one of the simplest models in the literature of test
problems (see e.g. Floudas and Pardalos, 1999 pag. 188-193), yet one
of the most difficult as it has been conjectured (Hoare, 1979) that the
number of local optimum conformations grows at least exponentially
with N. Many computational approaches can be found in the literature,
ranging from mathematical programming models (Gockenbach et al.,
1997), to genetic methods (Deaven et al., 1996), to Montecarlo sampling
(Wales and Doye, 1997) and many others. For a recent review of the
state of the art in this subject, the reader may consult (Wales and
Scheraga, 1999).

Unfortunately very few theoretical results are available which could
be used to tune an optimization method for the L-J minimization
problem. One notable exception is the result of (Xue, 1997) where it is
proven that in any global optimum the pairwise interatomic distance
is bounded from below by 0.5: while this result is considered obvious
in the chemical literature, only recently it has been proven in a formal
way. Very little is a-priori known on the structure of the global optima;
even a quite reasonable conjecture stating that the diameter of an
optimum N-atoms cluster is O(NI/S) is still open. Thus, except for
extremely small and easy cases, there are no proofs of global optimality
for the putative global optimum configurations known in the litera-
ture (see the L-J page on the Cambridge Clusters Database at URL
http://www.brian.ch.cam.ac.uk). All published results are aimed at
confirming, through experimentation, numerical results known in the
literature or at improving current estimates of the global optima.

Despite the complexity of the problem, most putative global optima
of micro-clusters (with up to 147 atoms) have been discovered by means
of a very simple and efficient algorithm first proposed in (Northby, 1987)
and further refined in (Xue, 1994), which is based on the idea of starting
local optimization from initial configurations built by placing atoms
in predefined points in space, according to lattice structures which
researchers in chemistry and physics believe are the most common ones
found in nature. However quite a few exceptions to regular lattice-based
structures do exist; these structures are extremely difficult to discover
with general purpose methods. It is to be remarked that new optima
are still being discovered, even though at a slower rate than just a
few years ago. In August 1999, for example, a new configuration for
LJgs was discovered (Leary and Doye, 1999) and possibly other new
records will appear even in the range N < 147 which has been the most
thoroughly and extensively studied in the last decade.

LJPAPER.tex; 13/01/2000; 10:31; p.3



4 Preprint: not to be quoted without explicit permission

In this paper we propose a new methodology aimed at discovering
the most difficult structures for Lennard-Jones clusters. Our main aim
is not to introduce a general purpose method, but that of defining a
new strategy for local searches which can be profitably included in any
algorithm which is based on local searches, including the basin-hopping
method (Wales and Doye, 1997), the big-bang method (Leary, 1997),
Leary’s descent method (Leary and Doye, 1999) or genetic algorithms
(see (Deaven et al., 1996), (Pullan, 1999)). Our method consists in a
modification of the objective function, in the first phase of the descent,
which enables a local search algorithm to escape from the enormous
number of local optima of the L-J energy landscape; implemented in a
straightforward Multistart-like method, our modification improved by
at least two order of magnitude the number of local searches required to
find the difficult 38 and 75 atom cases and could find the new 98 atom
cluster and the difficult 102 case in less than 10000 local searches.
In a series of runs the L.Js3s optimum was discovered in 56% of the
local searches performed, an incredible performance if compared with
the best result published so far in which LJsg is found in 0.3% of the
attempts (Leary, 1997). In our first attempt to attack the L.Jgg case,
which was discovered only in summer 1999 (Doye et al., 1999a) using
“millions of local searches” (Anonymous, 1999), we were able to find
the global optimum in less than 10 000 local searches, on average.

2. A new approach to the detection of Lennard-Jones
clusters

We consider Multistart-like approaches to the problem of globally mini-
mizing the Lennard-Jones potential function. The pure Multistart method
can be described as follows.

Pure Multistart

1. Generate a point X € RN from the uniform distribution over
a sufficiently large box centered at the origin;

2. perform a local search in IR*N using X as a starting point;

3. if a stopping condition is not satisfied, go back to 1, otherwise
return the local minimum with the lowest function value.

Of course, we can not expect Pure Multistart to be a feasible method

for the solution of the Lennard-Jones problem. Indeed, even though the
difficulty of solving a global optimization problem by Multistart is not
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actually related to the number of local minima, but to the measure of
the basin of attraction of the global minimum, the fact that the number
of local minima is exponentially large is a clear indication that Multi-
start may experience great difficulties in solving this kind of problems.
Numerical computations tend to confirm this fact. In Table I we notice
that Pure Multistart (PMS) applied to problems with N € {10,...,30}
fails to detect the putative global optimum for N = 21,27, 28, 29 after
1000 trials and has very low percentage of successes for many other
values of V.

Therefore, it seems necessary to modify the basic Multistart scheme
in order to be able to solve larger problems. A simple idea is to ex-
ploit the special structure of the Lennard-Jones potential function and
modify the search mechanism accordingly. Looking at the form of the
pairwise interaction function (1) we notice that good solutions should
possess some or all of the following characteristics:

— atoms should not be too close each other (also recalling the result
in Xue, 1997);

— the distance between many pairs of atoms should be close to 1.0,
since at 1.0 the Lennard-Jones pair potential attains its minimum;

— the optimal configuration should be as compact as possible, i.e.
the diameter of the cluster should not be too large.

According to these elementary observations, it is possible to sub-
stitute the uniform random generation of points (Step 1 in the Pure
Multistart method) by a generation mechanism which tends to favor
point configuration possessing the above characteristics. As a first at-
tempt in this direction we substituted the uniform random generation
procedure with the following:

Point Generation Procedure

1. Start with a single atom placed in the origin, i.e. let X; =0 €
R?;set X = {X;} and k = 2.
2. Generate a random direction d € IR® and a point X} along

this direction in such a way that its minimum distance r from
every point in X is at least 0.5.

3. If r is greater than a threshold R > 1 then X}, is shifted towards
the origin along direction d, until its distance from at least one
point in X becomes equal to R.
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4. Set X = X U{X}. If £ = N, stop; otherwise set k := k+ 1
and go back to Step 2.

This different point generation procedure slightly improves the per-
formance of Multistart as it can be seen from Table I where the results
of Multistart equipped with this generation algorithm are displayed
under the heading MMS (Modified Multistart); however even this modi-
fied algorithm soon starts failing in detecting the putative global optima
of moderately large clusters.

Table I. Number of successes in 1000 ran-
dom trials by Pure Multistart (PMS) and
Modified Multistart (MMS) methods.

|| N | PMS MMS || N | PMS MMS ||

11 32 36 || 21 - -
12 24 53 || 22 1 3
13 19 32 || 23 1 5
14 45 91 || 24 1 5
15 34 73 || 25 2 3
16 12 34 || 26 1 -
17 3 9 || 27 - 1
18 1 1| 28 - -
19 3 6 || 29 - -
20 3 7| 30 1 -

It might be possible to refine further the Point Generation Pro-
cedure in order to produce better starting points, but it is felt that
no real breakthrough can be achieved in this direction. It seems more
reasonable to attack the problem by changing another component of
the Multistart method, i.e. the local search procedure; we are thus
led to search for a local optimization method which avoids as much
as possible being trapped in stationary points of the Lennard-Jones
potential characterized by a high value of the potential energy (2). The
idea is that of performing local searches employing a modified objective
function which, although related to the Lennard-Jones potential, is in
some sense “biased” towards configurations which satisfy the above
requirements. The local minimum of this modified potential is then
used as a starting point for a local optimization of the Lennard-Jones
potential function. This leads to the following version of the Multistart
method. Let M E(X) be a suitably defined modified potential function.

Two-Phase Multistart
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1. Generate a point X € IR*N according to the Point Generation
Procedure;

2. perform a local minimization of the modified potential function
ME in IR*N using X as a starting point; let X be the local
optimum thus obtained;

3. perform a local optimization of the Lennard-Jones potential (2)
starting from X;

4. if a stopping condition is not satisfied, go back to Step 1; oth-
erwise return the local minimum of F with the lowest function
value.

We notice that, in place of the usual local search of the Pure or
Modified Multistart method, here we have what we call a two-phase
local search: first the function M F is optimized, and then the Lennard-
Jones potential F/. We underline that, even if at each iteration two local
searches are started, the computational effort is not doubled: indeed,
the local minimum X of M E is typically quite close to a local minimum
of I/, so that the computational effort of the second local search is much
lower than that of the first one.

Accordingly we need now to define M F in such a way that the local
minima of this function possess the desired characteristics. In what
follows two classes of functions, among which M F can be chosen, are
introduced. The first class contains functions with the following form

Zg(llXi = Xl (4)

where
1 2

g(r):er—r—p‘H”‘- (5)

Here p > 0 and p > 0 are real constants; we note that choosing

p =6 and p =0, g coincides with the Lennard-Jones pair potential (1).
In Figure 1 the case p = 4 and p = 0.3 is displayed and compared
with the Lennard-Jones pair potential. The parameters p and p have
important effects. By choosing p < 6 atoms can be moved more freely;
by decreasing p, the effect of the infinite barrier at r = 0.0, which
prevents atoms from getting too close to each other, is also decreased.

The parameter p has two important effects.

Local effect : it gives stronger penalty to distances between atoms
greater than 1.0; actually, it also assigns low penalty for pair dis-
tances lower than 1.0, but this is largely overcome by the barrier
effect which, as already remarked, prevents atoms from getting too
close each other.
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Figure 1. Comparison between Lennard-Jones and Modified potentials.

Global effect : it gives strong penalty to large distances between
atoms, e.g. to the diameter of the molecule.

In order to test the feasibility of this approach, a series of numerical
experiments have been performed by running 10000 times the algo-
rithm for N = 10,...,80. As these experiments were carried out on
Pentium I1 PC’s, we did not performed extensive and generalized trials
for N > 80. In Table II the number of two-phase local searches which
led to the putative global optimum are reported. We notice that the
percentage of successes is much higher than the one of the Pure or
Modified Multistart algorithm. In particular, two important cases are
discussed. The first case is N = 38, which is considered in the literature
a particularly difficult one (Doye et al., 1999a). While most putative
global optima in the range {10,...,80} have a so called icosahedral
structure, the putative global optimum for N = 38 has a FCC (Face
Centered Cubic) structure, and many algorithmic approaches, such as
the lattice search in (Northby, 1987) and (Xue, 1994), biased towards
icosahedral structures, are unable to detect this solution. The new
putative global optimum was first observed only recently in (Doye
et al., 1995) using a direct approach based on molecular dynamics; more
recently, in (Leary, 1997) the putative global optimum was found using
the “big bang” global optimization algorithm employing on the average
330 local searches, while for the basin hopping algorithm proposed in
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(Wales and Doye, 1997), the expected number of local searches required
to first hit this putative global optimum is 2 000. In the new approach,
choosing p = 4 and p = 0.3, the expected number of local searches is
reduced to 80, but, with the method described later in this paper, we
were able to obtain the incredible hitting rate of 1.79 local searches on
the average.

As it can be observed from Table 11, although quite successful for
some configurations, our method fails in several cases; most notably
it does not discover, at least in the first 10000 local searches, the
difficult structure of LJ75. This case is the second hard case in the
range {10,...,80} and it is much harder than the N = 38 case (in
order to appreciate the difficulties of both cases see the discussion about
multiple funnel landscapes in (Doye et al., 1999b)). As for N = 38, the
structure of the putative global optimum is non icosahedral (actually
the structure is a decahedral one). The putative global optimum has
been detected for the first time in (Doye et al., 1995); by employing
the Basin Hopping algorithm the reported expected number of local
searches to first detect this configuration is over 100000. Thus our
failure in detecting L.J7s during the first 10 000 local searches was not
a surprise.

However, instead of insisting with an higher number of local searches,
a modification of (5) was introduced in order to strengthen the global
effect. This lead to the following class of modified functions:

> (X - X, (6)
i<y
where
1
r2p

h(r) = - rzp + pr + B(max{0,r* — D*})?, (7)

where p,p, 3, D > 0; D is an underestimate of the diameter of the
cluster. In Figure 2 the case p = 4,4 = 0.2, =1, D = 2 is displayed
and compared with the Lennard-Jones pair potential function. We no-
tice that the penalty term B(max{0,r* — D?})? has no influence on
pairs of atoms close to each other, but strongly penalizes atoms far
away from each other. Thus, the new term does not affect the local
properties, but strengthens the global ones. The results for this class of
modified functions are reported in Table I1I. In particular, we note the
following results for the two difficult, non icosahedral cases, obtained
with suitable choices of the parameters.

— For N = 38 the expected number of (two-phase) local searches to
first hit the putative global optimum is 110803010 = 5.46, more than 60
times faster, in terms of local searches performed, than Big Bang

and 366 faster than Basin Hopping;
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Figure 2. Comparison between Lennard-Jones and modified potentials with diame-
ter penalization.

— for N = 75 the expected number of local searches is 3333, while
it was 125000 for the Basin Hopping algorithm: the improvement
factor is thus more than 37.

Given the results of N = 75, a better explanation of the failure
of our first approach can be given, supported by the observation of
the structure of the optimal decahedral structure (see Figure 3) and
icosahedral structure (see Figure 4).

In the best icosahedral structure the number of pairs of atoms which
are within distance close to 1.0 is 328, higher than what observed in
the optimal decahedral structure (319 pairs). In some sense, the icosa-
hedral structure has better local properties than the decahedral one.
However, this local disadvantage is compensated by the compactness
of the decahedral structure with respect to the icosahedral one: the
diameter of the decahedral structure is quite lower than the diameter of
the icosahedral one. Moreover, thanks to the compact structure, many
pairs of atoms in the decahedral structure have a distance which is
equal to the diameter (10 pairs in total, while the icosahedral structure
has only 2). In some sense we can say that the decahedral structure
has better global properties than the icosahedral one. In view of this
comparison, it is now possible to understand the failure for ¥ = 75
when (5) is employed. The linear penalty term pr has, as already
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Figure 3. Putative optimum for L.J7s

remarked, a double effect: a local effect, rewarding solutions with good
local properties (like the icosahedral structure), and a global effect,
rewarding solutions with good global properties (like the decahedral
structure). What appears to happen for N = 75 is that the local effect
dominates the global one, thus favoring the icosahedral structure with
respect to the decahedral one.

Even though complete computations have been performed only up to
N = 80, the new approach has been tested for two other difficult cases,
for which the putative global optimum is known to be not icosahedral.

— Very recently in (Leary and Doye, 1999) a new, non icosahedral,
putative global optimum for N = 98 has been detected, display-
ing a very compact structure; it is reported that this discovery
required “millions of local searches” (Anonymous, 1999); our new
approach could detect this solution within 10000 local searches on
the average.

— In (Wales and Doye, 1997) a non icosahedral putative global opti-
mum for N = 102 has been detected. The new approach was able
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Figure 4. Icosahedral optimum for LJ5

to detect this solution within 10 000 local searches, while the Basin
Hopping algorithm could detect the same solution only 3 times out
of 500000 local searches.

In other series of experiments with different parameter settings some-
times better results were found. As a particularly significative instance,
for L.Jsg with parameters p =5, = 0., D = 2.25, 3 = 1. the incredible
result of 56% successes was recorded in 1000 random trials. In practice
this means that, with such a parameter setting, the FCC structure of
LJsg can be observed after a fraction of a second of CPU time on a
normal personal computer.

2.1. LIMITS OF THE PROPOSED APPROACH

It is fair to consider the limits of the proposed approach and possible
ways to overcome them. The main limits of the approach can be seen
from the tables. We notice that for NV > 60 in many cases the putative
global optimum could not be detected. It is not possible to claim that
our new approach is a general one to solve problems for any value of N.
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What can be safely assumed is that it is an extremely successful method
in detecting those structures which differ from the icosahedral one;
this is particularly important as it is believed that when the number
of atoms N is large, compact, non-icosahedral structures prevail. For
most tested value of N for which the optimal structure is known to
be non icosahedral (N = 38,75,76,77,98,102) our method is much
faster (up to two orders of magnitude) than any other approach found
in the literature. It must be again underlined that, in the literature,
these cases are considered by far the most difficult ones. However, the
approach is not able to detect in an effective way some of the optimal
icosahedral structures. In order to detect these optimal structures it
is possible to incorporate the two-phase local search on which the
new approach is based into some of the approaches proposed in the
literature such as the Basin Hopping algorithm: the rationale behind
this is that it appears that the use of our modified potential, two-phase
local optimization actually enlarges the region of attraction of global
optima. In this respect, the choice of imposing a very low penalty on
the diameter should be considered safer, as the effect of this penalty
is usually so strong that only very compact structures are effectively
found (most micro clusters are indeed non compact).

An approach based on a forward procedure followed by a correction
procedure, has been tried, which enabled us to detect all the solutions
which could not be detected by the previous approach. The forward
procedure is already known in the literature and consists of starting the
optimization of LJy from a good configuration of LJy_1, adding first a
single atom and then optimizing the overall potential; we implemented
a variant which incorporates the two-phase local search in place of
the regular local optimization. The correction procedure, starting from
the best local optimum found, is based upon the displacement of two
atoms randomly chosen among those with highest energy contribution
into a different position, followed by the usual two-phase optimization.
Details on these procedures can be found in (Locatelli and Schoen,
1999), where it is shown that all those configurations which could not
be observed through our two-phase Multistart method can be obtained
by these more specialized methods.

Another critic to the proposed approach is the difficulty of choosing
sensible values for the parameters. Again it has to be remarked that
there is no general rule to choose a set of parameters which is sufficiently
good for a whole range of clusters. The main reason for this is that, as
it has already been remarked, cluster structures vary abruptly around
some “magic numbers”, like N = 38,75, 98, 102.

In an attempt to find general rules, we performed other experiments,
using the following parameters: p = 5 (which is an intermediate value
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between 4 and 6 used in previous experiments), § = 1; parameter D,
which governs the threshold for diameter penalization, was chosen as
a function of N, based upon a regression on the diameters of putative
global optima. In particular we choose

D=+vV13N-65-1.1 (8)

where the term v/1.3N — 6.5 comes from a regression analysis of the
diameters of putative global optima, while 1.1 is included to force very
compact structures during the first phase. Two sets of experiments were
carried out choosing respectively g =0 and g = 0.1in (7). The results
of these experiments are not reported here for sake of brevity, but can
be obtained through the web page of the second author. Again, with
these parameter settings, difficult clusters are found within a number
of local searches which is comparable with the results obtained in the
other numerical experiments we made; some clusters are found with
much greater efficiency using the automatic diameter penalization. For
example, clusters with ¥V = 11,12, 13,14 are generally found in more
than 98% of the trials (only LJy2 was found in 93% of the trials).
LJss is found (with g = 0.1) 4517 times in 10000 trials, LJ5; 1004
times, L.J75 2 times, and so on; however the automatic diameter choice
does not permit to find easy clusters like, e.g., LJys, which could be
found easily without penalty on the diameter; this fact should not be
considered a failure of the method: it should be observed that these
kind of structures are not particularly spherical, and are thus much
more easily detected without imposing any penalty on the diameter.
Moreover the regression on diameters we used to set the automatic
value was obtained from the diameters of molecules with more than 20
atoms and for low values of NV the resulting penalty on the diameter is
excessive.

3. Conclusions and further research issues

What we think is the main result presented in this paper is not an
original algorithm, although a very eflicient method has been analyzed
and its performance discussed. The major contribution of this paper is
the definition of a new local search strategy, composed of two phases,
the first of which is built in such a way as to pass over non interesting
local minima. Moreover, this local search promises to be very well suited
for general approaches for the Lennard-Jones and similar problems
in molecular conformation studies; in this paper it was shown how
the most difficult configurations for the Lennard-Jones cluster prob-
lem can be discovered with much greater efficiency by using a simple
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Multistart algorithm in which our two-phase local search is used in
place of a standard descent method. Some experiments have already
been performed to see if this two-phase local optimization might be
useful when substituted in place of a standard local search in a more
refined method. Our first results with forward and correct methods are
extremely encouraging.

In any case, already from the results presented here it is possible to
infer that the penalties and rewards included in the first phase optimiza-
tion succeed in driving the optimization close to very good, compact
clusters, avoiding being trapped in local optima which for a regular local
search method display very large regions of attraction. The structures of
optimal Lennard-Jones clusters are so radically different in some cases
that it seems quite unreasonable to look for general purpose methods
capable of discovering all optima in reasonable computer times. Our
approach greatly reduces the computational effort required to discover
what are commonly accepted as the most difficult configurations. It is
hoped that, when applied to larger clusters, this method will succeed in
finding better putative global optima. Of course, in case of much larger
clusters, the problem arises of efficiently computing the potential as
well as the penalized functions and gradients. Using a naive approach,
these computations require O(NN?) distances to be evaluated for each
iteration during local optimization; for large values of N this cost might
be prohibitively large. In order to cope with the curse of dimensionality,
it is planned in the next future to explore the possibility of parallelizing
energy computations; another possibility, which we did not explore up
to now, might be that of using faster approximate potential calcula-
tion, based on approaches similar to the one described in (Hingst and
Phillips, 1999).

4. Appendix: details on the computational experiments

All of the experiments have been performed either on 266Mhz Pen-
tium II Personal Computers or on a Sun Ultra 5 Workstation. For
local optimization a standard conjugate gradient method was employed
and, in particular, the implementation described in (Gilbert and No-
cedal, 1992) was used with standard parameter settings. For every
choice of the parameters, we ran random 10000 trials. Experiments
performed with different parameter settings, like those in tables 1 and
2, were conducted using the same seeds for the random generation
mechanism. That is, common random numbers were used for differ-
ent experiments: this way, in particular for those instances in which
finding the global optimum is a rare event, a comparison between
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the efficiency of different parameter settings becomes more reliable.
The executable code, compiled both for Pentium PC’s and for Sun
Ultra Sparc Stations, is freely available for research purpose at URL
http://globopt.dsi.unifi.it/users/schoen.
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Table II. Number of successes in 10000 trials without diameter penalization

N p=4 p=4 p==6 N p=4 p=4 p==6

w=0.1 w=0.23 w=0.23 w=0.1 w=0.3 w=0.3
10 1775 2609 899 46 15 5 2
11 3289 4321 1475 47 28 22 12
12 5855 7513 2436 48 6 6 16
13 6379 8200 2104 49 15 3 5
14 7761 8698 3933 50 1 3
15 1866 853 1740 51 100 130 29
16 2381 2201 1050 52 87 133 90
17 585 705 403 53 138 177 208
18 1155 1977 249 54 95 122 192
19 2631 3280 605 55 50 43 59
20 3327 4389 833 56 124 149 141
21 821 1193 309 57 2 2 3
22 2006 2541 644 58 - - 1
23 1592 2318 336 59 1 - 2
24 1909 2811 530 60 - - -
25 2174 3202 827 61 - - 1
26 942 1938 243 62 - - -
27 200 148 45 63 - 1 -
28 417 367 101 64 - - -
29 697 1166 105 65 - - -
30 66 48 14 66 - - -
31 68 53 21 67 - - -
32 141 68 44 68 - - -
33 104 164 45 69 - 1 -
34 12 5 8 70 - - -
35 29 18 20 71 - - -
36 24 43 15 72 - - -
37 9 8 12 73 - - -
38 57 123 24 74 - - -
39 32 12 20 75 - - -
40 37 19 14 76 - - -
41 4 2 8 77 - - -
42 4 3 6 78 - - -
43 11 6 4 79 - - -
44 17 9 16 80 - - -
45 16 3 10
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Table IT1I. Number of successes in 10000 trials with diameter penalization

19

D=3 D=3 D=2 D=3 D=3 D=2
N p=4 p=2©6 p= N p= p=2©6 p=4

pu=0.2 pu=0.2 pu=0.2 pu= 0.2 pu=0.2 pu=0.2
10 2686 1223 5172 || 46 - - 2
11 4138 1488 6259 || 47 - 1 4
12 7170 2254 9367 || 48 63 187 3
13 7858 2185 9931 || 49 - - 6
14 8571 3978 9881 || 50 2 5 6
15 1075 2230 - || 51 58 206 97
16 2214 1338 17 || 52 27 122 23
17 803 540 - || 53 13 131 214
18 1851 333 - || 54 4 103 26
19 2580 477 19 || 55 4 40 2
20 3638 804 225 || 56 2 128
21 1302 451 174 || 57 - - 4
22 2389 820 4 || 58 1 15 -
23 2020 428 2854 || 59 - - -
24 2753 968 854 || 60 - - 2
25 3459 1597 2191 || 61 - 4 -
26 2191 564 6840 || 62 - - -
27 52 10 - || 63 1 - -
28 235 58 - || 64 - 2 -
29 995 75 5 || 65 - - -
30 42 3 - || 66 - - -
31 - 13 - || 67 - - -
32 3 - || 68 - - -
33 10 3 - || 69 - - -
34 - - - || 70 - - -
35 2 9 - 71 - - -
36 6 2 - | 72 - - -
37 - - -l 73 - - -
38 437 887 1831 || 74 - - -
39 - - 672 || 75 - 3 1
40 5 - 91| 76 - 4 -
41 - - 1| 77 - 1 -
42 - - 1| 78 - - -
43 - - 1 79 - 2 -
44 - - 1| 80 - 1 -
45 - 1 2
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