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Global geometry optimization of atomic clusters using a modified genetic
algorithm in space-fixed coordinates

J. A. Niesse and Howard R. Mayne
Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824

(Received 6 May 1996; accepted 10 June 1996

In a recent paper, Gregurick, Alexander, and HaftBe K. Gregurick, M. H. Alexander, and B.
Hartke, J. Chem. Phy404, 2684(1996] proposed a global geometry optimization technique using

a modified Genetic Algorithm approach for clusters. They refer to their technique as a deterministic/
stochastic genetic algorith(®S-GA). In this technique, the stochastic part is a traditional GA, with

the manipulations being carried out on binary-coded internal coordifatesi—atom distancgs

The deterministic aspect of their method is the inclusion of a coarse gradient descent calculation on
each geometry. This step avoids spending a large amount of computer time searching parts of the
configuration space which correspond to high-energy geometries. Their tests of the technique show
it is vastly more efficient than searches without this local minimization. They report geometries for
clusters of up tam=29 Ar atoms, and find that their computer time scales @&*®). In this work,

we have recast the genetic algorithm optimization in space-fixed Cartesian coordinates, which scale
much more favorably than internal coordinates for large clusters. We introduce genetic operators
suited for realbase-1@variables. We find convergence for clusters umte55. Furthermore, our
algorithm scales as @39). It is concluded that genetic algorithm optimization in nonseparable real
variables is not only viable, but numerically superior to that in internal candidates for atomic cluster
calculations. Furthermore, no special choice of variable need be made for different cluster types;
real Cartesian variables are readily portable, and can be used for atomic and molecular clusters with
no extra effort. ©1996 American Institute of Physids§0021-960806)00435-7

I. INTRODUCTION There have been several recent attempts to introduce
o _7 methods which allow escape from these local minima. The
Atomic microclusters ™’ are composed of twq to a few' popular method of simulated annealit§A)®° has enjoyed
hundred atoms. They may be held together by either bonding,,ccess in this arena. The technique is an extension of Me-

or nonbonding interactions. Buckminsterfullergi@) is an tropolis Monte Carlo techniquédjn which the system point

example of the former; inert gas clusters the Iatter: The StUdYs allowed to wander over the configuration space at a given
of the geometry of these species presents a formidable the?émperature. In SA, the temperature is initially high, then is

retical challenge. This is due to the large number of IOCaIslowly reduced to absolute zero. At the end of the cooling, if

minima such clusters can possess. Since the most stable ST cooling is done infinitely slowly, the system will be in

ometry is presumably the global minimum it is usually thethe global minimum. In practice, however, infinitely slow

object of interest. However, the number of candidate rnlnlmacooling in not realizable. The presence of high barriers at the

increases rapidly with the number of atoms in the system. . .
picty y addle points between minima may, at low temperatures,

Even a cluster of only 13 atoms possesses on the orderof 18 . .
local minima. It is estimatéd' that the number grows as make the transition between minima extremely slow. In other

rapidly as exfn?). Clearly an exhaustive search in all dimen- Worc!s, the system may be kinetically, rather than thermody-
sions is not feasible. It is also extremely improbable that d'@mically controlied.
random walk in the configuration space is likely to find the  Another strategy has been to allow the system to behave
global minimum. Therefore, several strategies for guidingdt@ntum mechanically, leading to the possibility of tunnel-
the search have been devised. ing. This has been accomplished by using Gaussian wave
As mentioned above, one difficulty in locating the global Packets  in  imaginary tim&, by using distributed
minimum of a cluster is the presence of a vast number ofS@ussians; and by combining simulated annealing and
local minima. Therefore, one goal of a minimization searchduantum Monte Carlé? One problem with such methods is
for such systems is to efficiently escape from local minimathat they rapidly become increasingly difficult to implement
For the search to be successful, this must be to a minimum @S the number of dimensions increases.
lower potential energy. Techniques which use gradient infor- ~ Recently, there has been considerable interest in a sto-
mation to slide downhill typically locate the closest local chastic minimization global technique which requires no
minimum (in the sense that the minimum acts as an attractorsuch quantum formulation, and is undeterred by barriers.
and all points within its basin are attracted to Buch meth-  This is the method of genetic algorithrfs}” The genetic
ods, which move to a nearby local minimum, are sometimeslgorithm (GA) method is inspired by concepts from Dar-
termed “greedy”; they solve the local minimization problem winian natural evolution. Populations of candidate solutions
at the expense of the global solution. compete with each other for survival. Through selection,
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breeding, and mutation operations, the fittest individuals passpeaking, for a worst case scenario, an exhaustive search
their genetic characteristics on to later generations. In thithrough these variables requires on the ordeNbéfopera-
way, it is hoped that the ultimate surviving individyat this  tions. On the other hand, if each of these reals is translated
case, the cluster geomelrig the fittest possible; that is, the into a binary numbelsay eight bits there are now (R)

best solution to the optimization problem pogedthis case, digits to deal with, and the exhaustive search is now through
the global minimun a space of (8l)2. Unless the search is much more efficient in

One advantage of the GA method is that it is notthe binary space, the penalty for binary coding for laigye
“greedy.” The genetic operators often create children whosenay be significant.
structures differ drastically from their parents. Thus, these In considering structures such as clusters, there is an-
operators allow the system to escape from local minimapther important consideration. That is, the choice must be
since they do not attempt to “creep” uphill. In this way, made as to how best to represent the geometries. For in-
there can be extensive searching of the configuration spacstance, in an earlier paper, Hartkesed the “standard GA”
with the search appropriately guided by the fithess functionto find the minimum geometry of SiHe used a coordinate

There have been several recent applications of the GAystem which was carefully chosen to be as separable as
technique in the chemical literatuf¥&3 Many possible(Here “separable” means, roughly, the ability of a
papers:?°-28303haye dealt with obtaining the equilibrium coordinate to be approximately minimized independent of
geometry(that is, the minimum potential energgf a mol-  other coordinates.In the language of GA, such coordinates
ecule or cluster. In such cases, the “fitness” of a geometry iglescribe isolated building blocks, which can be either well
some function of its potential energy, with low potentials adapted or not well adapted, and are therefore, relatively
having higher fitness. Deaven and 3%evere able to locate clearly related to the fitness. In fact, Hartke stétes
the global minimum for g, using GA, although SA was “Straightforwardly taking the Cartesian or internal coordi-
unable to do so. Hartke has applied the method to the Sinates... does not work™, and suggests that the coordinates
moleculé® and the Sj, clustef’ on a semiempirical potential must represent “small building blocks.” This is in accord
energy surfacd® Zeiri?® has used the technique to confirm with the “principle of meaningful building blocks®* cen-
published® geometries of AfH, clusters. Mestres and tral to GA theory.

Scuseri&® have applied the technique to; @olecules and However, as a multivariable problem increases in size,
Ar;5 Lennard-Jones clusters. and the solution’s dependence on the variables becomes in-

Very recently, Greguricket al>! used a modified GA creasingly complex, it becomes much more difficult to sepa-
approach to minimize clusters as largeras29. They call rate the variables. This, of course, is why normal modes are
their method DS-GA, for deterministic-stochastic genetic al-introduced into the discussion of vibrational motions of mol-
gorithm. This approach incorporates an important innovaecules; the normal modes are suitable combinations of inter-
tion. By the addition of a gradient-based local descent foratomic distances which are separable for low-amplitude ex-
each geometry generated, these authors avoid searching pastssions from the global minimum. Unfortunately for the
of the configuration space which are repulsive. Points on theroblem at hand, the calculation of such coordinates presup-
potential energy surface which happen to be very high imposes knowledge of the global minimum.
energy(therefore unfit can, in fact, be “close’(in the sense A further difficulty is that a separable representation es-
that they are moved there by a gradient-based destent pecially chosen to be appropriate to any particulaatom
geometries which have low potential ener@gynd are there- cluster is not easily generalized to other cluster sizes. Fur-
fore fit). In essence, the authors restricted the individuals irthermore, even in the case of, Siilentioned above the cho-
their populations to be the geometries of local minima. Thussen coordinates spanned a restricted search space. It is clear
the search becomes a search through a fig@ilieeit large¢  from a later paper by the same author, that selection of such
number of individuals, rather than over an infinite set ofcandidate coordinate systems for larger clusters is
possibilities. problematic?’

There has been some discussion on the best choice of Zeiri, on the other hand, employs the rélahse-10 Car-
coding to use in genetic algorithm optimizations. Most of thetesian space-fixe(SH coordinates for as many as fourteen
GA-based approaches to cluster geometry optimization havatoms as the individuals in his nontraditional GA-based
used the “standard GA” to search the geometry space. In thechemé?® In this work, the structure of JAr,, clusters was
standard GA, variables are coded as bin@oase-2 bit  obtained without using the local minimization approach pro-
strings, and the operations are carried out on these stringposed by Greguricket al3* The approach of straightfor-
Goldberd*!” demonstrates that the “alphabet” used shouldwardly using SF coordinates is tempting. In an atomic cluster
be of as low a “cardinality” as possible. That is, the numbercontainingn atoms, for instance, there anén—1)/2 inter-
of possible characters used to convey genetic informatioatomic distances needed to describe the geometry. By com-
should be as small as possible; clearly the binary systerparison, there are alwaysn3space-fixed coordinates. Thus
fulfills this requirement best. for n>7, fewer coordinates are needed to describe the cluster

However, as the number of variables in a problem bein SF coordinates than in internal coordinates. If such addi-
comes large, the cost associated with the low cardinality ofional coordinates as dihedral angles are needed, the number
the binary alphabet may become prohibitifé=or instance, of internal coordinates increases, whereas such coordinates
suppose the problem depends Mrreal variables. Roughly can always be simply obtained from the SF data. For the
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sake of evaluating the performance of the algorithm, the=L2. Our choice ofL? for the termination of a conjugate

number of coordinates required in the SF system i8)Q( gradient minimization follows that of Gregurickf al>* We,

whereas that required in the internal coordinates (i8°D as they, utilize this value to prevent dissociation of a cluster
Clearly, then, for larger systems, the search space iduring the local minimization. However, we also usgas

smaller[O(n?)] for SF coordinates than it is for internal co- described above, when we randomly generate the individuals

ordinatesO(n*]. However, the question now becomes thatof a zeroth generation. It is unclear how Greguriekal3!

of the efficiency of the search procedure in a space whergenerate their zeroth generation.

individual points in that spacée.g., thez coordinate of the Given an individual(that is, a geometpyX;, we can
ith ator) are not directly related to the potential energy func-calculate the potential energy of the cluster for that geom-
tion. etry, V;=V(X;). Given the sefV,: i=1N} we can assign

Zeiri?® finds his results are at worst competitive with the fitnessf,, of theith individual. We use the convention
those obtained using simulated annealing. Furthermore, ughat thef; are normalized to unity. An intermediate quantity,
of the Cartesian coordinates provided portability betweerf;, is evaluated by taking a function &f .
cluster sizes and required no restriction of the search space. _ o
However, the representation in SF coordinates is plainly con- Fi=(Vi= Vi) (Vima—Viin), - =1N.
trary to the spirit of Goldberg’s “building block hypoth- The quantitiesV ., andV,;, are maxV;} and miqV;} re-
esis”’; none of the coordinates stands alone as a meaningfgpectively. The values df, are then found by normalization
building block* Furthermore, many of the variables are in- _
terchangeable by symmetry. Can this representation be used fizN—'.
efficiently with a Genetic Algorithm approach? While Zeiri Zi=1Fi
has enjoyed success with it, there is no direct timing com-  The next generatiotthe “children”) is formed from the
parison with other GA approaches available for the systengurrent generatiofthe “parents’) as follows. First, the best
he has chosen. The purpose of this paper is to systematical}0% (that is, those with the highest fitness the individuals
explore the viability of using the SF coordinates, and to comin the current generation are passed intact to the next gen-
pare with benchmark calculatiotison Ar, clusters using eration. (This is known as “elitism”2%). The remainder of
more traditional coordinates. the population in the next generation is obtained by use of

Therefore, we investigate here the feasibility of using thegenetic operators on the current generation. These(&re:

SF (base-10 codedcoordinates ina GA—inspired optimiza— inversion; (2) geometric mean;(3) arithmetic mean;(4)
tion technique incorporating the coarse minimization pro-n-point crossover(5) 2-point crossover. They are partially
posal of Greguricket al®* The computational procedures described elsewhere by Zeffiwe give the complete details
used are described in Sec. Il. Results and Discussion aifi Appendices A and B. Of these operators, number 1 trans-
given in Sec. I, and our conclusions are presented in Sedorms one individual into a different individual; numbers 2
V. and 3 use two parents to “breed” one child; numbers 4 and
5 use two parents to produce two children.

1. METHOD All operators are given the same weighting,=0.2, for
a=1 through 5. Following standard Monte Carlo practites,
‘a random number of0,1] is generated, and used to deter-
mine the operator to be selected. The requisite par@mis

6) or two depending on the operata@re then selected weighted

For the cluster potential energy, we use a pairwise

additive Lennard-Jones potential:
n n o 12 o

V(r)=4e>, > (-) —(— by their fitness using fresh random numbers.
=T Fij A typical run contains 10 or 20 individuals in a popula-
wherer denotes a vector whose elements are theCarte-  tion. A run was terminated when either the global minimum
sian coordinates. The values ©&ndo used® are 0.0123 eV was found or the potential energy of the bestfit structure did
and 3.36 A. not change for five generations.

Each individual X; , in the population to be evolved con-
sists of the realbase-10 SF Cartesian coordinates of each of
then atoms in the clusteXX=(x4,Y4,...,2,). We choose the We also implemented a seeding procedur€or an
number of individuals in the population to be typically 10 or n-atom cluster, one atom is added to a globally minimized
20. Initially, the coordinates are randomly chosen within a(n—1) cluster. This is carried out in the following manner.
box of sizeL? in the first octant. We choose the first octant The Cartesian coordinates of a minimizéd—1) cluster
so that all variables ares0. This is needed for the imple- were previously saved in a data file after having its center of
mentation of the geometric mean operatisee below. We  mass translated to the origin. As @n—1) cluster is read into
take x,=L¢, etc., where{ is a freshly-generated random our algorithm the distance of each atom from the origin is
number between 0 and 1. We have used 3/6no for this  calculated. This determines the distance from the origin,
work. A conjugate gradient minimization is performed everyr .., Of the furthest atom. Thath atom is then randomly
generation on each individual to place each structure in thplaced upon the sphere centered at the origin with
vicinity of the nearest minimum. The conjugate gradient pro-radius=r ,,,+2"%. Furthermore, the sedd—1) structure is
cedure is halted if anyizj =(X; —xj)2+(yi —yj)2+ (z —zj)2 randomly rotated about its center of mass by generating three

=1

A. Seeding
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TABLE I. Times needed to minimize Arby the SF modified GA. The

1000 F ' l ' ' ' 9 times are CPU times on a DEC 2100-500. Given are times for unseeded
No seeding o i (n=[4-29) and _seeded approaché_rF_[fS—SS]). The data_ for ‘the s_eeded
g 100 ol . method are the times needed to minimize a cluster of sig&rting with a
:"L 0l ofO e ...M“.O..p | minimi;ed cluster of size{nfl). Rgsults are the best of ten or, at most,
& OO » o twenty |ndependent runs. Figures in pa_rent_heses are the number of genera-
g 1k qg‘;f Seeded i tlons reqmr_eq fpr convergence. A zero |mpl!es convergence upon conjugate
5 ..} gradient minimization of the zeroth generation.
6 0.1+ .083 B .
: ©° n 10 per pop 20 per pop 10/pop; seeded
0.01 L ! ! | . o 4 0.049 (1) 0.103 (0) NA
0 0 20 3 4 50 60 5 0.052 (0) 0.157 (1) 0.1021)
Cluster size, n 6 0.162 (4) 0.342 (3) 0.2842)
7 0.073(1) 0.267 (1) 0.3742)
FIG. 1. Plot of CPU time for global minimization of LJ Arcluster as a 8 0.201(2) 0.366 (2) 0.2621)
function of cluster size. Open circles are unseeded calculasmes tex, 9 0.219 (1) 0.494 (2) 0.3751)
filled circles use the seedlng technique described. Each time s_hown is th(_e 10 0.478(1) 0.541 (1) 0.3901)
best _succ_essful result of ten independent runs. Note that the ordinate scale iS11 1.158(1) 1.176 (1) 0.4881)
logarithmic. 12 1.982(1) 0.980 (1) 0.5841)
13 1.899(2) 3.274 (2) 0.7431)
14 1.453(2) 3.874 (2 0.7651)
random Euler angles. The random Euler rotation generally 15 1.864(2) 6.763 (2) 1.0761)
prevents each of the seed@d-1) coordinates in each indi- 16 2.736(2) 7.180 (2) 1.1891)
vidual from being identical, since the sarfre-1) minimized 17 11.511(3) 8.196 (1) 1.3581)
. . 18 12.673(5) 17.518 (4) 3.2204)
structure is use_d_ez_ich _tlme. Theat(_)m _cluster then under-_ 19 3.387(2) 15.356 (3) 1.7451)
goes a local minimization after which its center of mass is og 11.445(2) 15.276 (2) 1.9681)
placed at X,y,z)=(L/2,L/2,L/2). This process is applied, 21 17.323(4) 64.211 (6) 2.1901)
with fresh random numbers, to each individual as the zeroth 22 33.170(3) 42.924 (2) 2.4641)
population is created. All coordinates were allowed to freely o2 ;gégéf& gg'éii Eg; giégii
evolve during thg initial local minimization and in any sub- 5 68.748(6) 56.805 (4) 4.3271)
sequent generations. 26 171.27610) 325.43916) 3.6171)
27 177.368(9) 151.053(5) 5.5875)
28 116.7880 457.96129 5.8691
lll. RESULTS AND DISCUSSION 2 100000 ot 00010 L oaa)

The results for the minimization of Arclustersn=[4— 30 18.4715)
29] without seeding and=[5-55 with seeding, are shown g; 1?2?%2
in Fig. 1. We plot CPU time as a function of cluster sine, 33 6.7471)
Each result is the best successful run of at most 20 indepen- 34 8.5631)
dent runs. In all cases, the global minimum was found to 35 6.5381)
+.001 reduced energy unitgysually within the first 5 runs. 36 ﬂ'ggi‘g
For the unseeded runs, we show the best results for popula- 54 15.1601)
tions of 10 and 20 individuals. There was no systematic dif- 39 8.1493)
ference in convergence times for the two population sizes. 40 10.8582)
We report the times for each population size in Table 1. 41 10.6484)
Populations larger than 20 were attempted, but did not im- 42 gig‘g
prove the times and are not reported here. We find that for 44 12.5281)
larger clusters, seeding results in faster convergence. 45 13.9671)

To implement the seeding method, we started with a 46 12.9681)
nucleus ofn=4, and built the cluster in increments of one j; ggggg
each time. We have pursued this as fanas5. If seeding is 49 15:8191)
used, the upper limit of cluster size which can be minimized 5q 21.7381)
using this technique has yet to be found. The CPU times 51 15.8041)
used(on a DEC 2100-500are given in Table | and shown in 32 16.6921)
Fig. 1. It can be seen from the data presented that the DS-GA 2431 12"6“1’%
using the SF coordinates here is able to find the minimum for g 18:32@1)

a large cluster “from scratch” in a reasonable time.
One of the purposes of this paper is to compare the re-

sults using SF coordinates without binary coding with the

results of Greguriclet al3! Since our calculations were car- parison of CPU times is not straightforward. However, the

ried out on a faster machine than theirs, we have, for th@perations involved in the Greguriak al. paper—potential

purposes of comparison, multiplied our CPU tirffeby a  evaluations, and their derivatives—seem to be reasonably

factor of 5.0 in all succeeding figure@Ve realize that com- similar in both cases.The CPU times for cluster minimiza-
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TABLE II. Best fit parameters to data in Figs. 2—4. It is assumed the data

T T T T T T
1000 - ° *ege] can be cast in the forntecn?. The value ofy is obtained using an un-
. DS-GA 5 o® ° weighted linear least squares @Ref. 37 to log(t) vs log(n). The integers
§ 100 L og® .° b i in brackets[nyi,,Nmax denote the range of cluster size over which the fit
oy ooo PR M was taken.
~ a
) * L
.g 10 - O 0 eg’®® 7 DS-GA This work
5 o "o, This work (X5)
6 1L . ®° i Unseeded 3[@-20Q 4.44-29
. 3.64-20]
ok " Seeded 7[21-29 3.35-55
. I 1 | | | k|
0 5 10 15 20 25 30 3.q17-41
Cluster size, n 2.242-59
Cumulative 4.54-29 3.34-55

FIG. 2. Plot of CPU time for unseeded clusters, using the DS-GA compared
with present method. Open squares are the results of Gregetrigkfilled

circles are present method multiplied by a factor of G€e text Note that . . . . .
the ordinate scale is logarithmic. One interesting point to notice from Table Il is that the

seeding technique increases in efficiency as the second sol-
vation shell(n=55) is closed. Presumably this is due to the

tion in which no seeding was employed are compared in Figl_ow number of available second shell sites for the added
2. The SF variant of the modified GA performs faster for all a&tom.
cluster sizes reported. Furthermore, Gregumtlal. report Perhaps a more reasonable measure of the performance
no converged results far=20. of the seeding technique is to measure the cumulative time
We note that the times needed fo=6, andn=18 are ne_edgd to minimize a cluster, ArFor our runs, we define
anomalously high. This observation agrees with that of Grethis time as:
gurick et al3! This appears to be due to the presence of n
many relatively low-lying minima in these particular cases. tg“m=t4+z ti,
Presumably, the difference in fithess between these and the =5
global minimum is small, making the algorithm work harder wheret; is the time needed to minimize thith cluster start-
to make the final evolutionary step. ing from the(i—1) structure(or from scratch if no seeding
In Fig. 3, we compare the times needed to minimize awyas used, as in the caserof4). Greguricket al! report an
seeded cluster. The time reported is the CPU time to obtaigverall scaling for their method. It appears that they used a
the optimal energy for cluster sizegiven a minimized clus-  similar definition of their cumulative time. We are able to
ter of size(n—1). It can be seen that as the cluster §i@ed  reproduce their reported scaling law if we further define:
the size of the search spacecreases, the SF application
becomes preferable. cum_ ,
One way of comparing numerical algorithms is to com- fn "= taot i:221 b
pare how they scale with the size of the problem. In order 9o their data. Results df'™ as a function of are given in
obtain this measure, one plots log@gainst logh) and ob- Fig. 4. The scalings are given in Table II.
tains the best straight line fit. For the data in Figs. 2 and 3, Clearly the SF version of the DS-GA presented here is at
these scalings are given in Table Il. In both cases—sged orst comparable to, and usually superior to the DS-GA of
and unseeded—the SF approach fgres better. Only if W%reguricket al3! This is a rather surprising result in light of
compare the data at very lowvalues is the DS-GA perfor- - go\herg's discussiohof the greater efficiency of GA op-

mance better. erations using binary-coded variables, and the “building
104 =g T T T T T £ "6‘ 104 T T T DI T T 1
u] 2 4
3 DSGA o | : DSGA b
< 10 a] % 108k .
g s R o
> 10° | ®o agett’osne g 102 F |
g . -~ 2 This work (X5)
5w0r - This work (X5) g 10 .
T 0 0’0"- % 0
“ 0’ - . < 10°F -
[ ] g o
10'l bt ] | ] ] ] + O 10-1 bt 1 1 ! | ] +
0 10 20 30 40 50 60 0 10 200 30 40 50 60
Cluster size, n Cluster size, n

FIG. 3. Plot of CPU time for seeded clusters, using the DS-GA compared-IG. 4. Plot of cumulative CPU timésee text for minimization of clusters
with present method. Symbols are as in Fig. 2. Note, that the ordinate scalesing the results of Greguriost al. compared with present method. Sym-
is logarithmic. bols are as in Fig. 2. Note that the ordinate scale is logarithmic.
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block hypothesis.” It is not clear to us at present exactly whythe philosophy of the DS-GA of Greguriek al> in that we
the SF variant performs so well. In future work, we will allow each geometry created in the search to be immediately
examine how the particular operators defined lianel origi- quenched to a local minimum. In contrast to their approach,
nally by Zeir?®) create new genetic material. however, we use the atomic space fixed Cartesian coordi-

It is unclear whether our enhanced efficiency is due tonates directly as our genetic material. This requires the use of
the base-10 coding itself or to the more complex operationsontraditional genetic operators, which we have adapted
applicable to base-10 variables. In an attempt to compare odrom the work of Zeiri?®
procedure with the more traditional GA approaches, we have We find the SF Cartesian version of the DS-GA with real
carried out comparison calculations on several cluster sizesoding is comparable to the DS-GA using internal coordi-
The most important operator in the “traditional” GA is the nates with binary coding at low. However, at higm, the
one-point crossoveft® We have carried out runs using our SF version is superior. It is capable of minimizing clusters up
base-10 coding together with this single operator. We reporto n=29 without any seeding. Using seeding, minimized
here only the results fan=19, which we find to be typical. clusters ofn=55 were readily attainable. It was found that
Using an initial population of ten individuals and only the the CPU time required scaled agr®?).
one-point crossover operator, the global minimum was lo-  The use of genetic algorithms with SF Cartesian coordi-
cated only twice in a batch of one hundred independent runsiates for the optimization of cluster geometries is clearly
This compares poorly to the usual location of the globalviable. We are at present pursuing further applications of this
minimum at least once in ten runs, as we report here. If th@pproach.
population size was increased to one hundred individuals, the Note added in proof. A very recent GA study of
probability of locating the global minimum increased to ap-Lennard-Jones clustef®. M. Deaver, N. Tit, J. R. Morris,
proximately 30%, but the CPU time of the best run alsoand K. M. Ho, Chem. Phys. Let256 195(1996] located a
increased. It appears that the efficiency of our technique isew global minimum fom=38. Since we halted our code
related both to the choice of the real space-fixed variablesyhen the literature minimum was reached, we missed this
and to the use of appropriate operators to search the variabfggometry. Further runs found the newly-discovered mini-
space. mum in 291 s CPU time.

We mention here some of theaveatsconcerning the
seeding technique. While the Aclusters used here seem not APPENDIX A
to go through any phase changesagoes from 4 to 55, this
is not always the case for other species. For certain potenti:&len
parameters, even such simple clusters as @mn undergo
morphology change as a function af’ In such circum-
stances, genetic information obtained for clusters of plaase
may actually be detrimental for clusters of phasdn addi-
tion, there may be several families of morpholaggarticu-
larly in bonded structurgsn which there is little similarity
between structureX,, and X, 1, even for smalh. We have
observed this in silicon clustef8.

We give here the details needed to fully understand the
etic algorithm operators used here. We denoteitine
geometry of then-atom cluster asX;=(Xq,...,X,), Where
X=Xk, Yk Z) is the displacement of thieth atom. While
the distinction betweeRr, y, andz coordinates is important
for evaluating the potential, the operators act simply on a
string of reals. To emphasize this we relabel this string of
reals asX;=(cq,...,C3y). We usec, to denotec,(i) if there
is no ambiguity. We summarize below the action of each of
the operators. In all the expressions belbwuns from 1 to
3n. In the notation §,(i),c (j)I1=1Ick(j),ck(i)] simulta-
neous substitution is implied, with the updated generation on
We have presented calculations of global potential enthe left hand side, the current generation on the right hand
ergy minimizations for Lennard-Jones clusters of argon, Ar side of the assignment. We also include an example of each
using a modified genetic algorithm approach. We have useferator’'s behavior.

IV. CONCLUSIONS

Inversion: Ck=Cqs+r—k F'<k=q (r,q flat on[1,3n])
A single parent, fq,...,ax_1, &, ¥i1,---,23,], IS required for
inversion. For instance if=k—2 andg=k+ 1 the resulting child
IS [@q,. o\t 1, QA 151 Q3p] -

Arithmetic mean: c(1)=0.5(c (i) +c(j))
Two parents|ay,....a,] and[B;,...,8s,], produce one child,
[0.5(e1+fy),....0.5(@z, + B3n) |

Geometric mean: c(i)=(cy(i)-cp(j)) 2
Two parents|ay,...,az,] and[B;,...,83,], yield one child,
[{abga,-B)}Y2... fabs(a, - Bsn) 12, As explained above,
we place each randomly generated cluster in the first octant
when creating the population for the zeroth generation
However, we do not explicitly restrict the coordinates to the
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first octant during subsequent generations, and therefore, we
take the absolute value of the product before the square root.
N-point crossover: ¢.(i),c(i)]1=1lck(i),c(i)] if £>0.5
[ex(i).ck(i)]=[ck(i).ck(j)] if {<0.5
Two parents, §q,...,ax_1, ¥, ¥ 1,---,&3,] and
[B1:--Br—1:Bk:+Br+1:---B3nl, produce two children. For example,
[B1,- k-1, Bk, Brr1s--»azn] @nd [ay,....Be-1, @k, @1, -,Ban] May
result, depending on then3“fresh” random numbers{.
2-point crossover: q(i), k()] = [Ss+k(i]):Ssrk+3n(ij)] s flat on[1,3n]
S(ij)=(cq(i),...,C3(i),€4(j),---,C3nj)) and it is understood that+k+ 3n is modulo 6.
The two parents,d,..., a1, ¥, ¥i1,---,&3,] and
[Bis- - Br—1:Bk:Bk+1:---B3nl, Yield two children,

[ak—l’ak’ak+1i---va3ni:81!---!ﬁk—2] and [Bk—lugk!Bk-%—li“-’Bsnyal’---yak—Z]
if, for example,s=k—2.
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