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Global geometry optimization of atomic clusters using a modified genetic
algorithm in space-fixed coordinates

J. A. Niesse and Howard R. Mayne
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~Received 6 May 1996; accepted 10 June 1996!

In a recent paper, Gregurick, Alexander, and Hartke@S. K. Gregurick, M. H. Alexander, and B.
Hartke, J. Chem. Phys.104, 2684~1996!# proposed a global geometry optimization technique using
a modified Genetic Algorithm approach for clusters. They refer to their technique as a deterministic/
stochastic genetic algorithm~DS-GA!. In this technique, the stochastic part is a traditional GA, with
the manipulations being carried out on binary-coded internal coordinates~atom–atom distances!.
The deterministic aspect of their method is the inclusion of a coarse gradient descent calculation on
each geometry. This step avoids spending a large amount of computer time searching parts of the
configuration space which correspond to high-energy geometries. Their tests of the technique show
it is vastly more efficient than searches without this local minimization. They report geometries for
clusters of up ton529 Ar atoms, and find that their computer time scales as O~n4.5!. In this work,
we have recast the genetic algorithm optimization in space-fixed Cartesian coordinates, which scale
much more favorably than internal coordinates for large clusters. We introduce genetic operators
suited for real~base-10! variables. We find convergence for clusters up ton555. Furthermore, our
algorithm scales as O~n3.3!. It is concluded that genetic algorithm optimization in nonseparable real
variables is not only viable, but numerically superior to that in internal candidates for atomic cluster
calculations. Furthermore, no special choice of variable need be made for different cluster types;
real Cartesian variables are readily portable, and can be used for atomic and molecular clusters with
no extra effort. ©1996 American Institute of Physics.@S0021-9606~96!00435-7#

I. INTRODUCTION

Atomic microclusters1–7 are composed of two to a few
hundred atoms. They may be held together by either bonding
or nonbonding interactions. Buckminsterfullerene~C60! is an
example of the former; inert gas clusters the latter. The study
of the geometry of these species presents a formidable theo-
retical challenge. This is due to the large number of local
minima such clusters can possess. Since the most stable ge-
ometry is presumably the global minimum it is usually the
object of interest. However, the number of candidate minima
increases rapidly with the number of atoms in the system.
Even a cluster of only 13 atoms possesses on the order of 103

local minima. It is estimated1,4 that the number grows as
rapidly as exp~n2!. Clearly an exhaustive search in all dimen-
sions is not feasible. It is also extremely improbable that a
random walk in the configuration space is likely to find the
global minimum. Therefore, several strategies for guiding
the search have been devised.

As mentioned above, one difficulty in locating the global
minimum of a cluster is the presence of a vast number of
local minima. Therefore, one goal of a minimization search
for such systems is to efficiently escape from local minima.
For the search to be successful, this must be to a minimum of
lower potential energy. Techniques which use gradient infor-
mation to slide downhill typically locate the closest local
minimum ~in the sense that the minimum acts as an attractor,
and all points within its basin are attracted to it!. Such meth-
ods, which move to a nearby local minimum, are sometimes
termed ‘‘greedy’’; they solve the local minimization problem
at the expense of the global solution.

There have been several recent attempts to introduce
methods which allow escape from these local minima. The
popular method of simulated annealing~SA!8,9 has enjoyed
success in this arena. The technique is an extension of Me-
tropolis Monte Carlo techniques,10 in which the system point
is allowed to wander over the configuration space at a given
temperature. In SA, the temperature is initially high, then is
slowly reduced to absolute zero. At the end of the cooling, if
the cooling is done infinitely slowly, the system will be in
the global minimum. In practice, however, infinitely slow
cooling in not realizable. The presence of high barriers at the
saddle points between minima may, at low temperatures,
make the transition between minima extremely slow. In other
words, the system may be kinetically, rather than thermody-
namically controlled.

Another strategy has been to allow the system to behave
quantum mechanically, leading to the possibility of tunnel-
ing. This has been accomplished by using Gaussian wave
packets in imaginary time,11 by using distributed
Gaussians,12 and by combining simulated annealing and
quantum Monte Carlo.13 One problem with such methods is
that they rapidly become increasingly difficult to implement
as the number of dimensions increases.

Recently, there has been considerable interest in a sto-
chastic minimization global technique which requires no
such quantum formulation, and is undeterred by barriers.
This is the method of genetic algorithms.14–17 The genetic
algorithm ~GA! method is inspired by concepts from Dar-
winian natural evolution. Populations of candidate solutions
compete with each other for survival. Through selection,
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breeding, and mutation operations, the fittest individuals pass
their genetic characteristics on to later generations. In this
way, it is hoped that the ultimate surviving individual~in this
case, the cluster geometry! is the fittest possible; that is, the
best solution to the optimization problem posed~in this case,
the global minimum!.

One advantage of the GA method is that it is not
‘‘greedy.’’ The genetic operators often create children whose
structures differ drastically from their parents. Thus, these
operators allow the system to escape from local minima,
since they do not attempt to ‘‘creep’’ uphill. In this way,
there can be extensive searching of the configuration space,
with the search appropriately guided by the fitness function.

There have been several recent applications of the GA
technique in the chemical literature.18–31 Many
papers21,25–28,30,31have dealt with obtaining the equilibrium
geometry~that is, the minimum potential energy! of a mol-
ecule or cluster. In such cases, the ‘‘fitness’’ of a geometry is
some function of its potential energy, with low potentials
having higher fitness. Deaven and Ho26 were able to locate
the global minimum for C60 using GA, although SA was
unable to do so. Hartke has applied the method to the Si4
molecule21 and the Si10 cluster

27 on a semiempirical potential
energy surface.33 Zeiri25 has used the technique to confirm
published32 geometries of ArnH2 clusters. Mestres and
Scuseria28 have applied the technique to C8 molecules and
Ar13 Lennard-Jones clusters.

Very recently, Greguricket al.31 used a modified GA
approach to minimize clusters as large asn529. They call
their method DS-GA, for deterministic-stochastic genetic al-
gorithm. This approach incorporates an important innova-
tion. By the addition of a gradient-based local descent for
each geometry generated, these authors avoid searching parts
of the configuration space which are repulsive. Points on the
potential energy surface which happen to be very high in
energy~therefore unfit! can, in fact, be ‘‘close’’~in the sense
that they are moved there by a gradient-based descent! to
geometries which have low potential energy~and are there-
fore fit!. In essence, the authors restricted the individuals in
their populations to be the geometries of local minima. Thus,
the search becomes a search through a finite~albeit large!
number of individuals, rather than over an infinite set of
possibilities.

There has been some discussion on the best choice of
coding to use in genetic algorithm optimizations. Most of the
GA-based approaches to cluster geometry optimization have
used the ‘‘standard GA’’ to search the geometry space. In the
standard GA, variables are coded as binary~base-2! bit
strings, and the operations are carried out on these strings.
Goldberg14,17 demonstrates that the ‘‘alphabet’’ used should
be of as low a ‘‘cardinality’’ as possible. That is, the number
of possible characters used to convey genetic information
should be as small as possible; clearly the binary system
fulfills this requirement best.

However, as the number of variables in a problem be-
comes large, the cost associated with the low cardinality of
the binary alphabet may become prohibitive.16 For instance,
suppose the problem depends onN real variables. Roughly

speaking, for a worst case scenario, an exhaustive search
through these variables requires on the order ofN2 opera-
tions. On the other hand, if each of these reals is translated
into a binary number~say eight bits!, there are now (8N)
digits to deal with, and the exhaustive search is now through
a space of (8N)2. Unless the search is much more efficient in
the binary space, the penalty for binary coding for largeN
may be significant.

In considering structures such as clusters, there is an-
other important consideration. That is, the choice must be
made as to how best to represent the geometries. For in-
stance, in an earlier paper, Hartke21 used the ‘‘standard GA’’
to find the minimum geometry of Si4. He used a coordinate
system which was carefully chosen to be as separable as
possible.~Here ‘‘separable’’ means, roughly, the ability of a
coordinate to be approximately minimized independent of
other coordinates.! In the language of GA, such coordinates
describe isolated building blocks, which can be either well
adapted or not well adapted, and are therefore, relatively
clearly related to the fitness. In fact, Hartke states21

‘‘Straightforwardly taking the Cartesian or internal coordi-
nates... does not work’’, and suggests that the coordinates
must represent ‘‘small building blocks.’’ This is in accord
with the ‘‘principle of meaningful building blocks’’34 cen-
tral to GA theory.

However, as a multivariable problem increases in size,
and the solution’s dependence on the variables becomes in-
creasingly complex, it becomes much more difficult to sepa-
rate the variables. This, of course, is why normal modes are
introduced into the discussion of vibrational motions of mol-
ecules; the normal modes are suitable combinations of inter-
atomic distances which are separable for low-amplitude ex-
cursions from the global minimum. Unfortunately for the
problem at hand, the calculation of such coordinates presup-
poses knowledge of the global minimum.

A further difficulty is that a separable representation es-
pecially chosen to be appropriate to any particularn-atom
cluster is not easily generalized to other cluster sizes. Fur-
thermore, even in the case of Si4 mentioned above

21 the cho-
sen coordinates spanned a restricted search space. It is clear
from a later paper by the same author, that selection of such
candidate coordinate systems for larger clusters is
problematic.27

Zeiri, on the other hand, employs the real~base-10! Car-
tesian space-fixed~SF! coordinates for as many as fourteen
atoms as the individuals in his nontraditional GA-based
scheme.25 In this work, the structure of H2Arn clusters was
obtained without using the local minimization approach pro-
posed by Greguricket al.31 The approach of straightfor-
wardly using SF coordinates is tempting. In an atomic cluster
containingn atoms, for instance, there aren(n21)/2 inter-
atomic distances needed to describe the geometry. By com-
parison, there are always 3n space-fixed coordinates. Thus
for n.7, fewer coordinates are needed to describe the cluster
in SF coordinates than in internal coordinates. If such addi-
tional coordinates as dihedral angles are needed, the number
of internal coordinates increases, whereas such coordinates
can always be simply obtained from the SF data. For the
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sake of evaluating the performance of the algorithm, the
number of coordinates required in the SF system is O(n),
whereas that required in the internal coordinates is O~n2!.

Clearly, then, for larger systems, the search space is
smaller@O~n2!# for SF coordinates than it is for internal co-
ordinates@O~n4!#. However, the question now becomes that
of the efficiency of the search procedure in a space where
individual points in that space~e.g., thez coordinate of the
i th atom! are not directly related to the potential energy func-
tion.

Zeiri25 finds his results are at worst competitive with
those obtained using simulated annealing. Furthermore, use
of the Cartesian coordinates provided portability between
cluster sizes and required no restriction of the search space.
However, the representation in SF coordinates is plainly con-
trary to the spirit of Goldberg’s ‘‘building block hypoth-
esis’’; none of the coordinates stands alone as a meaningful
building block.14 Furthermore, many of the variables are in-
terchangeable by symmetry. Can this representation be used
efficiently with a Genetic Algorithm approach? While Zeiri
has enjoyed success with it, there is no direct timing com-
parison with other GA approaches available for the system
he has chosen. The purpose of this paper is to systematically
explore the viability of using the SF coordinates, and to com-
pare with benchmark calculations31 on Arn clusters using
more traditional coordinates.

Therefore, we investigate here the feasibility of using the
SF ~base-10 coded! coordinates in a GA-inspired optimiza-
tion technique incorporating the coarse minimization pro-
posal of Greguricket al.31 The computational procedures
used are described in Sec. II. Results and Discussion are
given in Sec. III, and our conclusions are presented in Sec.
IV.

II. METHOD

For the cluster potential energy, we use a pairwise-
additive Lennard-Jones potential:

V~r !54e(
i51

n

(
j. i

n S S s

r i j
D 122S s

r i j
D 6D ,

wherer denotes a vector whose elements are the 3n Carte-
sian coordinates. The values ofe ands used35 are 0.0123 eV
and 3.36 Å.

Each individual,Xi , in the population to be evolved con-
sists of the real~base-10! SF Cartesian coordinates of each of
then atoms in the cluster:X5(x1 ,y1 ,...,zn). We choose the
number of individuals in the population to be typically 10 or
20. Initially, the coordinates are randomly chosen within a
box of sizeL3 in the first octant. We choose the first octant
so that all variables are>0. This is needed for the imple-
mentation of the geometric mean operation~see below!. We
take x15Lz, etc., wherez is a freshly-generated random
number between 0 and 1. We have usedL 5 A3 6ns for this
work. A conjugate gradient minimization is performed every
generation on each individual to place each structure in the
vicinity of the nearest minimum. The conjugate gradient pro-
cedure is halted if anyr i j

25(xi2xj )
21(yi2yj )

21(zi2zj )
2

>L2. Our choice ofL2 for the termination of a conjugate
gradient minimization follows that of Gregurick,et al.31 We,
as they, utilize this value to prevent dissociation of a cluster
during the local minimization. However, we also useL, as
described above, when we randomly generate the individuals
of a zeroth generation. It is unclear how Gregurick,et al.31

generate their zeroth generation.
Given an individual~that is, a geometry! Xi , we can

calculate the potential energy of the cluster for that geom-
etry, Vi5V(Xi). Given the set$Vi : i51,N% we can assign
the fitness,f i , of the i th individual. We use the convention
that thef i are normalized to unity. An intermediate quantity,
Fi , is evaluated by taking a function ofVi .

Fi5~Vi2Vmin!/~Vmax2Vmin!, i51,N.

The quantities,Vmax andVmin are max$Vi% and min$Vi% re-
spectively. The values off i are then found by normalization

f i5
Fi

( i51
N Fi

.

The next generation~the ‘‘children’’! is formed from the
current generation~the ‘‘parents’’! as follows. First, the best
20%~that is, those with the highest fitness! of the individuals
in the current generation are passed intact to the next gen-
eration.~This is known as ‘‘elitism’’14!. The remainder of
the population in the next generation is obtained by use of
genetic operators on the current generation. These are:~1!
inversion; ~2! geometric mean;~3! arithmetic mean;~4!
n-point crossover;~5! 2-point crossover. They are partially
described elsewhere by Zeiri.25 We give the complete details
in Appendices A and B. Of these operators, number 1 trans-
forms one individual into a different individual; numbers 2
and 3 use two parents to ‘‘breed’’ one child; numbers 4 and
5 use two parents to produce two children.

All operators are given the same weighting,wa50.2, for
a51 through 5. Following standard Monte Carlo practices,10

a random number on@0,1# is generated, and used to deter-
mine the operator to be selected. The requisite parents~one
or two depending on the operator! are then selected weighted
by their fitness using fresh random numbers.

A typical run contains 10 or 20 individuals in a popula-
tion. A run was terminated when either the global minimum
was found or the potential energy of the bestfit structure did
not change for five generations.

A. Seeding

We also implemented a seeding procedure.2 For an
n-atom cluster, one atom is added to a globally minimized
~n21! cluster. This is carried out in the following manner.
The Cartesian coordinates of a minimized~n21! cluster
were previously saved in a data file after having its center of
mass translated to the origin. As an~n21! cluster is read into
our algorithm the distance of each atom from the origin is
calculated. This determines the distance from the origin,
rmax, of the furthest atom. Thenth atom is then randomly
placed upon the sphere centered at the origin with
radius5rmax121/6s. Furthermore, the seed~n21! structure is
randomly rotated about its center of mass by generating three
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random Euler angles. The random Euler rotation generally
prevents each of the seeded~n21! coordinates in each indi-
vidual from being identical, since the same~n21! minimized
structure is used each time. Then-atom cluster then under-
goes a local minimization after which its center of mass is
placed at (x,y,z)5(L/2,L/2,L/2). This process is applied,
with fresh random numbers, to each individual as the zeroth
population is created. All coordinates were allowed to freely
evolve during the initial local minimization and in any sub-
sequent generations.

III. RESULTS AND DISCUSSION

The results for the minimization of Arn clusters,n5@4–
29# without seeding andn5@5–55# with seeding, are shown
in Fig. 1. We plot CPU time as a function of cluster size,n.
Each result is the best successful run of at most 20 indepen-
dent runs. In all cases, the global minimum was found to
6.001 reduced energy units,4 usually within the first 5 runs.
For the unseeded runs, we show the best results for popula-
tions of 10 and 20 individuals. There was no systematic dif-
ference in convergence times for the two population sizes.
We report the times for each population size in Table I.
Populations larger than 20 were attempted, but did not im-
prove the times and are not reported here. We find that for
larger clusters, seeding results in faster convergence.

To implement the seeding method, we started with a
nucleus ofn54, and built the cluster in increments of one
each time. We have pursued this as far asn555. If seeding is
used, the upper limit of cluster size which can be minimized
using this technique has yet to be found. The CPU times
used~on a DEC 2100-500! are given in Table I and shown in
Fig. 1. It can be seen from the data presented that the DS-GA
using the SF coordinates here is able to find the minimum for
a large cluster ‘‘from scratch’’ in a reasonable time.

One of the purposes of this paper is to compare the re-
sults using SF coordinates without binary coding with the
results of Greguricket al.31 Since our calculations were car-
ried out on a faster machine than theirs, we have, for the
purposes of comparison, multiplied our CPU times36 by a
factor of 5.0 in all succeeding figures.~We realize that com-

parison of CPU times is not straightforward. However, the
operations involved in the Greguricket al. paper—potential
evaluations, and their derivatives—seem to be reasonably
similar in both cases.! The CPU times for cluster minimiza-

FIG. 1. Plot of CPU time for global minimization of LJ Arn cluster as a
function of cluster size. Open circles are unseeded calculations~see text!;
filled circles use the seeding technique described. Each time shown is the
best successful result of ten independent runs. Note that the ordinate scale is
logarithmic.

TABLE I. Times needed to minimize Arn by the SF modified GA. The
times are CPU times on a DEC 2100-500. Given are times for unseeded
~n5@4–29#! and seeded approaches~n5@5–55#!. The data for the seeded
method are the times needed to minimize a cluster of sizen starting with a
minimized cluster of size~n21!. Results are the best of ten or, at most,
twenty independent runs. Figures in parentheses are the number of genera-
tions required for convergence. A zero implies convergence upon conjugate
gradient minimization of the zeroth generation.

n 10 per pop 20 per pop 10/pop; seeded

4 0.049 ~1! 0.103 ~0! NA
5 0.052 ~0! 0.157 ~1! 0.102~1!
6 0.162 ~4! 0.342 ~3! 0.284~2!
7 0.073 ~1! 0.267 ~1! 0.374~2!
8 0.201 ~2! 0.366 ~2! 0.262~1!
9 0.219 ~1! 0.494 ~2! 0.375~1!
10 0.478 ~1! 0.541 ~1! 0.390~1!
11 1.158 ~1! 1.176 ~1! 0.488~1!
12 1.982 ~1! 0.980 ~1! 0.589~1!
13 1.899 ~2! 3.274 ~2! 0.743~1!
14 1.453 ~2! 3.874 ~2! 0.765~1!
15 1.864 ~2! 6.763 ~2! 1.076~1!
16 2.736 ~2! 7.180 ~2! 1.189~1!
17 11.511~3! 8.196 ~1! 1.355~1!
18 12.673~5! 17.518 ~4! 3.220~4!
19 3.387 ~2! 15.356 ~3! 1.745~1!
20 11.445~2! 15.276 ~2! 1.968~1!
21 17.323~4! 64.211 ~6! 2.190~1!
22 33.170~3! 42.924 ~2! 2.469~1!
23 16.151~3! 46.166 ~4! 2.919~1!
24 36.998~4! 83.541 ~5! 3.453~1!
25 68.748~6! 56.805 ~4! 4.327~1!
26 171.275~10! 325.439~16! 3.617~1!
27 177.368~9! 151.053 ~5! 5.587~5!
28 116.783~20! 457.961~29! 5.869~1!
29 118.968~16! 275.080~15! 17.345~1!
30 18.472~5!
31 6.488~5!
32 17.658~5!
33 6.747~1!
34 8.563~1!
35 6.538~1!
36 11.998~5!
37 14.687~1!
38 15.160~1!
39 8.149~3!
40 10.858~2!
41 10.648~4!
42 12.394~3!
43 12.137~2!
44 12.523~1!
45 13.967~1!
46 12.963~1!
47 13.368~1!
48 15.630~1!
49 15.819~1!
50 21.733~1!
51 15.804~1!
52 16.692~1!
53 16.493~1!
54 18.611~1!
55 18.320~1!
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tion in which no seeding was employed are compared in Fig.
2. The SF variant of the modified GA performs faster for all
cluster sizes reported. Furthermore, Greguricket al. report
no converged results forn>20.

We note that the times needed forn56, andn518 are
anomalously high. This observation agrees with that of Gre-
gurick et al.31 This appears to be due to the presence of
many relatively low-lying minima in these particular cases.
Presumably, the difference in fitness between these and the
global minimum is small, making the algorithm work harder
to make the final evolutionary step.

In Fig. 3, we compare the times needed to minimize a
seeded cluster. The time reported is the CPU time to obtain
the optimal energy for cluster sizen given a minimized clus-
ter of size~n21!. It can be seen that as the cluster size~and
the size of the search space! increases, the SF application
becomes preferable.

One way of comparing numerical algorithms is to com-
pare how they scale with the size of the problem. In order to
obtain this measure, one plots log(t) against log(n) and ob-
tains the best straight line fit. For the data in Figs. 2 and 3,
these scalings are given in Table II. In both cases—seeded
and unseeded—the SF approach fares better. Only if we
compare the data at very lown values is the DS-GA perfor-
mance better.

One interesting point to notice from Table II is that the
seeding technique increases in efficiency as the second sol-
vation shell~n555! is closed. Presumably this is due to the
low number of available second shell sites for the added
atom.

Perhaps a more reasonable measure of the performance
of the seeding technique is to measure the cumulative time
needed to minimize a cluster, Arn . For our runs, we define
this time as:

tn
cum5t41(

i55

n

t i ,

wheret i is the time needed to minimize thei th cluster start-
ing from the~i21! structure~or from scratch if no seeding
was used, as in the case ofn54!. Greguricket al.31 report an
overall scaling for their method. It appears that they used a
similar definition of their cumulative time. We are able to
reproduce their reported scaling law if we further define:

tn
cum5t201 (

i521
t i ,

for their data. Results oftcum as a function ofn are given in
Fig. 4. The scalings are given in Table II.

Clearly the SF version of the DS-GA presented here is at
worst comparable to, and usually superior to the DS-GA of
Greguricket al.31 This is a rather surprising result in light of
Goldberg’s discussions14 of the greater efficiency of GA op-
erations using binary-coded variables, and the ‘‘building

FIG. 2. Plot of CPU time for unseeded clusters, using the DS-GA compared
with present method. Open squares are the results of Greguricket al. filled
circles are present method multiplied by a factor of 5.0~see text!. Note that
the ordinate scale is logarithmic.

FIG. 3. Plot of CPU time for seeded clusters, using the DS-GA compared
with present method. Symbols are as in Fig. 2. Note, that the ordinate scale
is logarithmic.

TABLE II. Best fit parameters to data in Figs. 2–4. It is assumed the data
can be cast in the form,t}ng. The value ofg is obtained using an un-
weighted linear least squares fit~Ref. 37! to log(t) vs log(n). The integers
in brackets@nmin ,nmax# denote the range of cluster size over which the fit
was taken.

DS-GA This work

Unseeded 3.9@4–20# 4.4@4–29#
3.6@4–20#

Seeded 7.5@21–29# 3.3@5–55#
3.6@17–41#
2.2@42–55#

Cumulative 4.5@4–29# 3.3@4–55#

FIG. 4. Plot of cumulative CPU time~see text! for minimization of clusters
using the results of Greguricket al. compared with present method. Sym-
bols are as in Fig. 2. Note that the ordinate scale is logarithmic.
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block hypothesis.’’ It is not clear to us at present exactly why
the SF variant performs so well. In future work, we will
examine how the particular operators defined here~and origi-
nally by Zeiri25! create new genetic material.

It is unclear whether our enhanced efficiency is due to
the base-10 coding itself or to the more complex operations
applicable to base-10 variables. In an attempt to compare our
procedure with the more traditional GA approaches, we have
carried out comparison calculations on several cluster sizes.
The most important operator in the ‘‘traditional’’ GA is the
one-point crossover.14,15We have carried out runs using our
base-10 coding together with this single operator. We report
here only the results forn519, which we find to be typical.
Using an initial population of ten individuals and only the
one-point crossover operator, the global minimum was lo-
cated only twice in a batch of one hundred independent runs.
This compares poorly to the usual location of the global
minimum at least once in ten runs, as we report here. If the
population size was increased to one hundred individuals, the
probability of locating the global minimum increased to ap-
proximately 30%, but the CPU time of the best run also
increased. It appears that the efficiency of our technique is
related both to the choice of the real space-fixed variables,
and to the use of appropriate operators to search the variable
space.

We mention here some of thecaveatsconcerning the
seeding technique. While the Arn clusters used here seem not
to go through any phase changes asn goes from 4 to 55, this
is not always the case for other species. For certain potential
parameters, even such simple clusters as Arn can undergo
morphology change as a function ofn.7 In such circum-
stances, genetic information obtained for clusters of phasea
may actually be detrimental for clusters of phaseb. In addi-
tion, there may be several families of morphology~particu-
larly in bonded structures! in which there is little similarity
between structuresXn andXn11, even for smalln. We have
observed this in silicon clusters.38

IV. CONCLUSIONS

We have presented calculations of global potential en-
ergy minimizations for Lennard-Jones clusters of argon, Arn

using a modified genetic algorithm approach. We have used

the philosophy of the DS-GA of Greguricket al.31 in that we
allow each geometry created in the search to be immediately
quenched to a local minimum. In contrast to their approach,
however, we use the atomic space fixed Cartesian coordi-
nates directly as our genetic material. This requires the use of
nontraditional genetic operators, which we have adapted
from the work of Zeiri.25

We find the SF Cartesian version of the DS-GA with real
coding is comparable to the DS-GA using internal coordi-
nates with binary coding at lown. However, at highn, the
SF version is superior. It is capable of minimizing clusters up
to n529 without any seeding. Using seeding, minimized
clusters ofn555 were readily attainable. It was found that
the CPU time required scaled as O~n3.3!.

The use of genetic algorithms with SF Cartesian coordi-
nates for the optimization of cluster geometries is clearly
viable. We are at present pursuing further applications of this
approach.

Note added in proof.A very recent GA study of
Lennard-Jones clusters@D. M. Deaver, N. Tit, J. R. Morris,
and K. M. Ho, Chem. Phys. Lett.256, 195 ~1996!# located a
new global minimum forn538. Since we halted our code
when the literature minimum was reached, we missed this
geometry. Further runs found the newly-discovered mini-
mum in 291 s CPU time.

APPENDIX A

We give here the details needed to fully understand the
genetic algorithm operators used here. We denote thei th
geometry of then-atom cluster asXi5(x1 ,...,xn), where
xk5(xk ,yk ,zk) is the displacement of thekth atom. While
the distinction betweenx, y, andz coordinates is important
for evaluating the potential, the operators act simply on a
string of reals. To emphasize this we relabel this string of
reals asXi5(c1 ,...,c3n). We useck to denoteck( i ) if there
is no ambiguity. We summarize below the action of each of
the operators. In all the expressions belowk runs from 1 to
3n. In the notation [ck( i ),ck( j )]5[ck( j ),ck( i )] simulta-
neous substitution is implied, with the updated generation on
the left hand side, the current generation on the right hand
side of the assignment. We also include an example of each
perator’s behavior.

Inversion: ck5cq1r2k r<k<q ~r ,q flat on @1,3n#!
A single parent, [a1 ,...,ak21,ak ,ak11,...,a3n], is required for
inversion. For instance ifr5k22 andq5k11 the resulting child
is [a1 ,...,ak11,ak ,ak21,...,a3n].

Arithmetic mean: ck( i )50.5(ck( i )1ck( j ))
Two parents,@a1,...,an# and @b1,...,b3n#, produce one child,
@0.5~a11b1!,...,0.5(a3n1b3n)#.

Geometric mean: ck( i )5(ck( i )•ck( j ))
1/2

Two parents,@a1,...,a3n# and @b1,...,b3n#, yield one child,
@$abs~a1•b1!%

1/2,...,$abs(a3n•b3n)%
1/2#. As explained above,

we place each randomly generated cluster in the first octant
when creating the population for the zeroth generation
However, we do not explicitly restrict the coordinates to the
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first octant during subsequent generations, and therefore, we
take the absolute value of the product before the square root.

N-point crossover: [ck( i ),ck( j )]5[ck( j ),ck( i )] if z.0.5
[ck( i ),ck( j )]5[ck( i ),ck( j )] if z<0.5
Two parents, [a1 ,...,ak21,ak ,ak11,...,a3n] and
[b1 ,...,bk21,bk ,bk11,...,b3n], produce two children. For example,
[b1 ,...,ak21,bk ,bk11,...,a3n] and [a1 ,...,bk21,ak ,ak11,...,b3n] may
result, depending on the 3n ‘‘fresh’’ random numbers,z.

2-point crossover: [ck( i ),ck( j )]5[Ss1k( i j ),Ss1k13n( i j )] s flat on @1,3n#
S( i j )5(c1( i ),...,c3n( i ),c1( j ),...,c3nj )) and it is understood thats1k13n is modulo 6n.
The two parents, [a1 ,...,ak21,ak ,ak11,...,a3n] and
[b1 ,...,bk21,bk ,bk11,...,b3n], yield two children,
[ak21,ak ,ak11,...,a3n,b1 ,...,bk22] and [bk21,bk ,bk11,...,b3n,a1 ,...,ak22]
if, for example,s5k22.

APPENDIX B

There are several ways in which the above operators can
allow duplication of individuals within a population. To be
duplicates here means two structures have not only the same
potential energy~degenerate!, but have the same coordinates
as well. The population may become overly weighted with
duplicates of the lowest energy structure because this is cho-
sen most often to be a parent~has the highest fitness!. A
second reason why duplication is undesirable, particularly
within a population as small as that used here, is that dupli-
cate parents can exchange information resulting in a child
cluster containing two atoms with identical coordinates. We
avoid most duplications by preventing certain choices during
some of the breeding schemes. These are:
Inversion: kÞ3n
Arithmetic mean: iÞ j
Geometric mean: iÞ j
N-point crossover: iÞ j and we ensure that at least one

switch occurs.
2-point crossover: kÞ3n and iÞ j

However, duplication may still occur through more com-
plicated, but rare, manipulations spanning more than one
generation. We have scanned some runs for structures with
the same energy within any one generation. We determined
if they are duplicates, and not merely degenerate, by simply
subtracting corresponding coordinates. A result of zero for
each of the 3n pairs indicates duplication. We find, after the
above restrictions are implemented, that fewer than 0.1% of
generations~10 individuals in population,n513! contained
duplicates. As mentioned previously, duplication may result
in a child cluster which contains two or more atoms with
identical coordinates, causing divide by zero errors upon cal-
culation of the cluster’s potential. We prevent these errors by
artificially setting anyr i j

2,8.0 Å2 to 8.0 Å2 during the cal-
culation of the potential and its derivatives, without actually
altering the coordinates themselves. This ensures that either
the offending structure receives an extremely low fitness and
is subsequently eliminated from the population or a local
minimization produces a viable candidate.
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