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Abstract. In this paper a recently developed real coded genetic algorithm called MI-LXPM of Deep et al.
[8] and Particle Swarm Optimization (PSO) are applied to the challenging problem of finding the minimum
energy configuration of a cluster of identical atoms interacting through the Lennard-Jones potential. Finding
the global minimum of this function is very difficult because it has a large number of local minima, which
grows exponentially with molecule size. Computational results for a cluster containing up to 15 atoms are
obtained and presented. The obtained results show the remarkable performance of MI-LXPM as compared to
PSO and to the earlier published results.
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1 Introduction

Finding the most stable configuration of atomic clusters is a challenging problem as it is highly complex
and its complexity increases with the increase in number of atoms. Minimum energy usually corresponds to
maximum stability for atomic clusters!'!. Also it can be formulated as a global optimization problem. It is
an eminently challenging global optimization problem as the number of local minima increases exponentially
with the size of the molecule!!®l. One of the first, most efficient and successful approaches to Lennard-Jones
(L-J) cluster optimization was introduced in [22] and further refined in [24]. This approach is based on the
idea of starting local optimization from initial configurations built by randomly placing atoms in predefined
points in space, according to lattice structures which is most commonly found in nature.

Successful methods for solving the L-J problem are the basin hopping method>!, the big-bang
method!'”), Leary’s [20] descent method, genetic algorithms!”> !4l and differential evolution?!!. A geomet-
ric crossover technique, known as cut and splice, has been proposed in [5, 6]. PSO has also been applied to
L-J problem!'”!.

There are also hybrid algorithms which combine Monte Carlo (MC) or simulated annealing (SA) type
optimization with genetic algorithm!!®!. In [2], different optimization methods are considered, multi level
single link, topographical differential evolution and a genetic algorithm but it is shown that genetic algorithms
combined with an efficient local optimization method is especially speedy and reliable for the task of finding
the structure of atomic and molecular clusters. A recently developed technique is hybridization of GA with
Monte Carlo approach!'?! for geometry optimization of atomic clusters.

It is observed that in most of the results in literature!® 2!l etc. that the computational effort is substantial in
terms of function evaluations, where [21] used an iterative local search based differential evolution algorithm
and [2] a binary coded genetic algorithm for solving L-J potential energy function. With a view to use an
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optimization algorithm which employs less number of function evaluations, in this paper the above problem
is solved by a recently developed real coded genetic algorithm called MI-LXPM'®! and PSO[18]. The results
show that MI-LXPM uses nearly one third of the function evaluations as reported in literature!> >!1. However
PSO’s performance is not appreciable for this problem.

The paper is organized as follows. Section 2 describes the Lennard-Jones potential energy function math-
ematically. Section 3 describes the real coded genetic algorithm MI-LXPM applied to the problem described
in section 2. Basic PSO is described in Section 4. Computational results are presented in Section 5 and dis-
cussion of results in Section 6. Conclusions are presented in Section 7.

2 Problem discussion

The L-J problem assumes that the potential energy of a cluster of atoms is given by the sum of pairwise
interactions between atoms, with these interactions being Vander Waals forces given by the Lennard-Jones
6-12 potential. The problem consists of determining the positions ¢, to, - - ,t, € R> of an n atom cluster in
such a way that the L-J potential given by

n—1 n
—12 -6
v=> 2 (ez’j _2%’)’ M
i=1 j=i+1
where e;; is the Euclidean distance between the points ¢; and ¢, generated by atomic interactions is minimized.
Each atom of the cluster is characterised by a set of three real numbers corresponding to the (x, y, z) position

of each atom. The problem is then to find the positions of each atom of the cluster that corresponds to the
global minimum value of V, given in Eq. (1).

3 Real coded genetic algorithm MI-LXPM

Genetic algorithms are population based heuristics which are used to determine solution of non-linear
optimization problems. GA’s mimic the Darwin’s principal of “survival of fittest”. GA uses three basic opera-
tions selection, crossover and mutation in moving from one generation to another.

MI-LXPM®! is a real coded genetic algorithm which uses the Laplace crossover!'”) and Power
mutation®. It also uses tournament selection. It is efficient to solve integer, real and mixed integer, non-linear
constrained optimization problems. More details of these operators are defined in subsections.

3.1 Laplace crossover

Two offsprings, y' = (y1,vs, - ,y.) and y* = (y},vy3,--- ,y2) are generated from two parents, z* =
(zd, 2, 2l)and 2% = (22,23, -, 22) in the following way. First, uniform random numbers are u;, 7; €
[0, 1] generated. Then a random number [3; is generated satisfying the Laplace distribution, as under,

_ { a —blog(u;), 1 <1/2,

2
a+ blog(u;), 1 >1/2, 2

where a is location parameter and b > 0 is scaling parameter. With smaller values of b, offsprings are likely
to be produced nearer to parents and for larger values of b, offsprings are expected to be produced far from
parents. Having computed f3;, the two offsprings are obtained as under:

1 1 1.2
yi =z + Bi|z — a3

Ly = af + Bifa] —F). 3)
Also one important thing to notice is that Eq. (3) gives:
i — vl = [ — 7], @)

which shows that in laplace crossover the spread of offsprings is proportional to the spread of parents.
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3.2 Power mutation

A solution z is created in the vicinity of a parent solution T in the following manner. First, a uniform
random number ¢ between 0 and 1 and a random number s which follows the power distribution, s = (s1)P,
where s is a uniform random number between O and 1, are created. p is called the index of mutation. It
governs the strength of perturbation of power mutation. Having determined s a muted solution is created as:

T—s@—al), t<n,

xz{x%—s(w“—:p), t>r, )
where
T — !
t= —,
J/:U_

z! and z* being the lower and upper bounds on the value of the decision variable and r a uniformly distributed
random number between 0 and 1.

3.3 Selection technique

A selection technique in a GA is simply a process that favors the selection of better individuals in the
population for the mating pool. MI-LXPM uses tournament selection.

3.4 Computational steps of MI-LXPM

Computational steps of the MI-LXPM algorithm are as follows:
Step 1. Generate a suitably large initial set of random points within the domain prescribed only by the bounds
on variable i.e. points satisfying ij <z; < azg.], j =1,2,---  n, for variables which are to have real values
and ij <y; < yy, y; integer for variables which are to have integer values.
Step 2. Check the stopping criteria, if satisfied stop; else goto Step 3.
Step 3. Apply tournament selection procedure on initial (old) population to make mating pool.
Step 4. Apply laplace crossover and power mutation to all individuals in mating pool, with probability of
crossover p. and probability of mutation p,,, respectively, to make new population.
Step 5. Apply integer restrictions on variables where necessary and evaluate their fitness values.
Step 6. Increase generation; replace old population by new population; goto Step 2.

4 Particle swarm optimization (PSO)

The idea behind PSO is based on the simulation of the social behavior of bird flock and fish schools. PSO
is a swarm intelligence method for global optimization problems. It differs from well-known evolutionary
algorithms as in evolutionary algorithms a population of potential solutions is used to probe the search space,
but no operators, inspired by evolution procedures, are applied on the population to generate new promising
solutions. Instead in PSO, each individual, namely particle, of the population, called swarm, adjusts its tra-
jectory towards its own previous best position (pbest), and towards the previous best position of any member
of its topological neighborhood (gbest). Two variants of the PSO have been developed, one with a global
neighborhood and the other with a local neighborhood. According to the global variant, each particle moves
towards its best previous position and towards the best particle in the whole swarm. On the other hand, in
the local variant, each particle moves towards its best previous position and towards the best particle in its
restricted neighborhood.

Working of PSO may be briefly described as under:

Suppose the search space is D dimensional, then the i, particle of the swarm can be represented by a D-

dimensional vector, X; = (z;1, Zi2, -+ , &5 D)T. The velocity (position change) of this particle can be repre-
sented by another D- dimensional vector V; = (v;1, vi2, - -+ ,v;p)’ . The best previously visited position of the
iy, particle is denoted as P; = (pi1, pi2, - ,Pi D)T. Defining g as the index of the best particle in the swarm,
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the swarm is manipulated according to the following two equations:
velocity update equation:

Vid = Vid + c171(Pid — Tia) + c272(Dgd — Tid), (6)

position update equation:
Tid = Tid + Vid, (7
where d = 1,2,--- ,D;i = 1,2,---, S, where S is the size of the swarm; ¢; and co are constants, called

cognitive and social scaling parameters respectively (usually, ¢c; = co; r1, 72 are random numbers, uniformly
distributed in [0, 1]). Eq. (6) and (7) define the initial version of PSO algorithm. A constant, Vj,ax, wWas used
to arbitrarily limit the velocities of the particles and improve the resolution of the search. The pseudo code of
PSO is shown below:

For t = 1 to the max. bound of the number on iterations,

For i = 1 to the swarm size,

For d = 1 to the problem dimensionality,

Apply the velocity update equation:

Update Position

End- for-d;

Compute fitness of updated position;

If needed, update historical information for P; and P,;

End-for-i;

Terminate if P, meets problem requirements;

End-for-t;

End algorithm.

The maximum velocity Vi,.y, serve as a constraint to control the global exploration ability of particle
swarm. A larger Vi, facilitates global exploration, while a smaller V.« encourages local exploitation. Clerc
[4] has introduced a constriction factor, y which improves PSO’s ability to constrain and control velocities.

X is computed as:

2
X = ; (@)
2—¢— /oo —4)
where ¢ = c1 + c2, ¢ > 4 and the velocity update equation is then
Vid = X" (Via + c171(pid — Tia) + c272(Pgd — Tid))- )

Eberhart and Shi [13] found that, x combined with constraints on V}, ., significantly improved the PSO
performance.

5 Computational results

In this section we present numerical results using MI-LXPM and PSO algorithm to the energy function
V. Both the programs are executed on a Pentium IV with 512 MB of RAM.

The problem is to find the most stable conformation of the cluster with atoms ranging from 3 to 15
having known global minimum energy values!!!. Cartesian coordinates of each atom are considered as decision
variables.

5.1 Parameter setting for MI-LXPM

100 independent runs are performed, each time using a different seed for the generation of random
numbers. The algorithm stops whenever either the maximum number of generations have been attained or
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the known global minimum has been reached. A run is considered successful if the global minimum function
value is reached.

Population size for each of the case is kept fixed and is equal to ten times the number of variables however
maximum number of generations allowed is varied in each of the cases as the complexity of the problem
increases with the increase in the number of atoms. The probability of crossover is fine-tuned keeping the
probability of mutation fixed at 0.001. The mutation probability is fixed as there is negligible effect on the
success rate of its variation from 0.001 to 0.005 which is fine tuned earlier!'”), whereas there is significant
variation in the success rate with the change of crossover probability. Tab. 1 shows the variation of success
rate of MI-LXPM as we change the probability of crossover (p.) between 0.5 to 1.0 keeping probability
of mutation fixed (p,, = 0.001). Also Fig. 1 shows the effect of crossover probability on success rate and

Table 1. Fine tuning of crossover probability (p.) between 0.5 to 1.0 keeping probability of mutation, p,,,=0.001 fixed
for n=10

Probability of crossover | 0.5 0.6 0.7 0.8 09 1.0
% of success 37 43 61 94 100 73

it is clearly seen that p. =0.9 corresponds to the highest success rate (100%), so p. is taken as 0.9. Fig. 2
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Fig. 1. Variation of success rate of MI-LXPM with Fig. 2. Variation of objective function values corre-
crossover probability for n=10 sponding to different crossover probabilities

represents generation wise variation of the objective function value corresponding to two different crossover
probabilities i.e. p.=0.8 and p.=0.9 and it is quiet clear that choice of appropriate crossover probability is the
major contributing factor in the efficiency and efficacy of a genetic algorithm.

5.2 Parameter setting for PSO

In literature, different values of these parameters are used. In this paper we set swarm size S = 100
and the cognitive and social parameters c¢; and cy of PSO are set to be 2.8 and 1.3 as taken in literature!?].
Constriction coefficient y is calculated from Eq. (8). The inertia weight is set equal to 0.5. The total number
of simulations considered is 100. The criterion to terminate the algorithm is reaching maximum number of
iterations which is set to be 100,000.
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6 Discussion of results

All the observations using MI-LXPM and PSO are recorded in Tab. 2 along with the earlier published
results given in [21] and [2] using two algorithms namely DELP (The local search based differential evolution
algorithm for potential minimization) and binary coded GA. Tab. 2 shows the number of function evaluations
(average, minimum, maximum) using MI-LXPM and average function evaluations using GA (binary coded),
DELP for the given potential energy function. For PSO average of minimum number of function evaluations
required to reach the best energy value achieved by PSO in each run.

From Tab. 2, it is clear that MI-LXPM reached the global minimum function value with much less effort,
in terms of function evaluation than other algorithms.

Table 2. Comparison of functional evaluations using GA*(2), DE**[21] ' MI-LXPM and PSO for a cluster containing
atoms from 3 to 15

GA* DE** MI-LXPM PSO
Minimum
N us Jag | O S fuee fug | Obtained O fuug
Energy % %
Energy

3 1550 1973 | —3.0000 100 201 507 341 —3.0000 100 13970
4 3673 10359 | —6.0000 100 732 1857 1144 —6.0000 100 68400
5 8032 31443 | —9.1038 100 4778 6937 5929 —9.1038 100 220800
6 31395 67953 | —12.7120 100 7935 10997 9271 —12.2991 74 306854
7 48900 103449 | —16.5053 100 14025 36220 24253 —15.0429 60 389641
8 | 121247 207776 | —19.8214 100 23844 40982 31107 —19.1671 0 421032
9 | 346397 1463183 | —24.1133 100 29379 75035 57208 —21.8320 0 516890
10 | 721370 4653805 | —28.4225 100 99513 197009 136846 —24.2940 0 623768
11 — — | —32.7659 70 88483 241797 197514 —26.4812 0 687213
12 — — | =37.9676 100 139733 451858 279910 —32.1131 0 740265
13 — — | —44.3268 84 171149 521437 327712 —33.2150 0 789542
14 — — | —47.8451 100 301615 614189 456716 —34.4274 0 847646
15 — — | —52.3226 64 321611 649368 485462 —37.3204 0 996421

To further analyze the performance of MI-LXPM a graphical representation in the form of box plot is
shown in Fig. 3 and the best performer is marked with star.

The important fact to notice is the presence of outliers in box plot representation in each of the algorithm
considered which indicate an extreme of behavior of the problem under study thus showing the complexity of
the problem.

Further the relative error for PSO using known minimum function value is defined by

Best Optima Obtained(Minimum function value)-Global Optima
Global Optima ’

which is shown in Fig. 4 and it is clear from the figure that as the number of atoms of the cluster goes
on increasing the relative error also increases which indicates the complexity of the problem. Finally from
computational results we can observe that MI-LXPM outperformed all other algorithms for solving the L-J
potential problem. The following are the optimized structures of the L-J cluster obtained using MI-LXPM.

Relative Error (RE) = (10)

7 Conclusions

A Lennard-Jones potential of an atomic cluster up to 15 atoms is minimized which is very useful in
predicting the stable structure of the molecule which in turn dictates majority of its properties. Computa-
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Fig. 3. Box Plot showing function evaluations for n = 3 Fig. 4. Relative error using PSO

to n = 10 using MI-LXPM, GA, DE

Fig. 5. Optimized structures obtained using MI-LXPM of L-J cluster of atoms fromn = 3ton = 15
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tional results are obtained and presented using MI-LXPM and PSO and are compared with earlier published
results'® 2! and it is clearly seen (Tab. 2) that MI-LXPM performs far better than the other algorithms used. It
is important to notice that the comparison of performance was based on the number of function evaluations,
necessary to achieve the global minima rather than on the overall time of the search.

Although PSO is also an efficient search technique for solving complex optimization problems but it is not
successful for L-J problem. It might be because of the fact that L-J problem is highly multi-modal in nature
and the cooperation among the particles of swarm might limit the search space exploration as the position
update rule creates a bias to move towards the points which have already been explored. And because of this
it may stuck in the local optima. Whereas MI-LXPM uses Laplace Crossover and Power Mutation; Laplace
Crossover is basically a parent centric approach i.e. the offsprings produced by this approach are proportional
to the spread of parents. Therefore, it preserves the maximum properties of parents, so convergence is fast,
and its combination with power mutation also maintains the diversity in the population.

Hence, MI-LXPM algorithm performs better than the other algorithms. However, MI-LXPM becomes
slow as we take more atoms in the cluster. This is because of the complexity of the problem which increases
with the increase in number of atoms in cluster. Therefore, improving MI-LXPM for larger problems will
form the basis of our future research.
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