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OPTICS

• Interaction of electrons in graphene with light of frequency ω and left (+) and right
(−) circular polarizations is described by Hamiltonian

δH± =
evFE
iω

(
σ± 0

0 σ∓

)
, (5)

where E is electric field amplitude and σ± = σx ± iσy.
• Optical selection rules determined from dipole strength |d±ν |2 = |〈Mz = ±1|δH±|ν〉|2,
where |Mz = ±1〉 is collective excitation and |ν〉 is ground state with filling factor ν.
• Optical selection rules are no spin- or pseudospin flips, Mz = ±1 and |n1|− |n2| = ±1.

RESULTS

• Energies in units of E0 = (π/2)1/2e2/εlB (lB is magnetic length)
• Each LL has four sublevels due to spin and pseudospin splitting. We compute results for sublevel
filling factors ν = 1, 2, 3, 4 of the n = 0 LL. In general infinitely many excitations with the same Mz

are mixed. We focus on mixing between excitations with the same single particle cyclotron energies
which involve the n = 0 LL as an initial or final state. There are four such excitations with no spin or
pseudospin flip (see insets in Fig. 2). We present results for these excitations only, since they alone are
electrically dipole active.
• The electron-hole symmetry of graphene leads to a duality in the bound states: For sublevels ν =

1, 2, 3 of LL with number n, the eigenstates and eigenenergies of excitations are identical to those for
sublevels of LL with number −n under the following:

Mz ↔ −Mz

ν ↔ ν − 4

D+ ↔ A−.
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Figure 3: Evolution with filling factor ν of energies and optical strengths of magnetoplasmons bound on the D+ with (a) Mz = 1

active in the σ+ polarization and (b) with Mz = −1 active in the σ− polarization. Optically active states are indicated by circles
with sizes ∼ |d±ν |2. Inset: Dipole strength |d−ν |2 vs energy for ν = 2. The spectra were convoluted with a Gaussian of width 0.03E0.
The arrow indicates an impurity-related feature below ~ω̃c (below energy zero in the Figure).
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Figure 2: Energies of magnetoplasmons bound on an impurity versus projection of the orbital angular momentum Mz for (a)
a donor impurity and filling factor ν = 1, and (b) an acceptor impurity and ν = 3. The spectra exhibit the symmetry D+ ↔ A−,
Mz ↔ −Mz and ν ↔ 4− ν. The hatched area of width 0.75E0 represents the continuum of extended magnetoplasmons.
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Figure 1: Energies of magnetoplasmons bound on an impurity versus projection of the orbital angular
momentum Mz for (a) a donor impurity and filling factor ν = 2, (b) a donor impurity and ν = 3, (c) an
acceptor impurity and ν = 4 and (d) a donor impurity and ν = 4. The shaded area represents the band.

SINGLE PARTICLE IN A MAGNETIC FIELD

• Single impurity, so use axially symmetric gauge: A = 1
2B× r

• Wavefunction for single electron in K valley (pseudospin ⇑):

Φnms⇑(r) = 〈r|c†nms⇑|0〉 = 2
1
2(δn,0−1)


sign(n)φ|n|−1 m(r)

φ|n|m(r)

0

0

χs , (4)

where φ|n|m(r) is regular LL wavefunction for a 2DEG and χs is spin part.
• Corresponding energy: εN = sign(n)~ωc

√
|n| + ~ωssz + ~ωvσz,

where ~ωc = vF

√
2e~B is cyclotron energy in graphene and other terms represent spin

and valley splitting.

THEORY

• In graphene Kohn’s theorem doesn’t apply and interactions are very important.
Need to consider collective excitations:

Q
†
N1N2Mz

=

∞∑
m1,m2=0

AN1N2Mz
(m1, m2)c

†
N1m1

d
†
N2m2

, (1)

where c
†
N1m1

and d
†
N2m2

are creation operators for electron and hole, m = 0, 1, . . . is
oscillator quantum number and N = nsσ represents LL index n ∈ Z, spin s =↑, ↓ and
valley pseudospin σ =⇑,⇓.
• Excitations labelled by Mz, the z component of orbital angular momentum, such
that expansion coefficients satisfy AN1N2Mz

(m1, m2) ∼ δMz,|n1|−m1−|n2|+m2
.

• Q
†
N1N2Mz

acts on |ν〉, the ground state with integer filling factor ν.
• Hamiltonian is

Ĥ
N ′

1N ′
2

N1N2
=

∞∑
m=0

(
ε̃N1

+ VN1m
)
c
†
N1m

cN1m

−
∞∑

m=0

(
ε̃N2

+ VN2m
)
d
†
N2m

dN2m (2)

+
∑

m1,m2

m′
1,m

′
2

(
WN2m2N ′

1m
′
1

N1m1N ′
2m

′
2
−WN ′

1m
′
1N2m2

N1m1N ′
2m

′
2

)
c
†
N ′

1m
′
1
d
†
N ′

2m
′
2
dN2m2

cN1m1
.

ε̃N is single particle LL energy renormalised by self energy corrections due to
exchange with electrons in lower cone, VN1m = 〈φnm|V (r)|φnm〉 is impurity matrix

element, WN ′
1m

′
1N2m2

N1m1N ′
2m

′
2

= 〈ΦN ′
1m

′
1
ΦN ′

2m
′
2
|Uee|ΦN1m1

ΦN2m2
〉 = δs1,s′1

δσ1,σ′1
δs2,s′2

δσ2,σ′2
Un′1m

′
1 n′2m

′
2

n1m1 n2m2

is direct electron-hole attraction and WN2m2N ′
1m

′
1

N1m1N ′
2m

′
2

is repulsive electron-hole exchange.

• Graphene matrix elements, Un′1m
′
1 n′2m

′
2

n1m1 n2m2
, are related to those for 2DEG, Un′1m

′
1 n′2m

′
2

n1m1 n2m2

Un′1m
′
1 n′2m

′
2

n1m1 n2m2
= an1an2an′1

an′2

[
U
|n′1|m′

1 |n′2|m′
2

|n1|m1 |n2|m2

+sn1sn′1
U
|n′1|−1 m′

1 |n′2|m′
2

|n1|−1 m1 |n2|m2
+sn2sn′2

U
|n′1|m′

1 |n′2|−1m′
2

|n1|m1 |n2|−1 m2

+sn1sn2sn′1
sn′2

U
|n′1|−1 m′

1 |n′2|−1 m′
2

|n1|−1 m1 |n2|−1 m2

]
,

(3)

SUMMARY [ARXIV:0902.4176]
We consider collective excitations in graphene in a strong perpendicular magnetic
field with a single Coulomb impurity. We show that localised collective modes split
off the magnetoplasmon continuum and in addition, quasibound states are formed
within the continuum. A study of the evolution of the dipole strengths and energies
of magneto-optical transitions is performed for integer filling factors ν = 1, 2, 3, 4 of
the zeroth Landau level (LL). We predict impurity absorption peaks above as well as
below the cyclotron resonance. In contrast to the 2D electron gas (2DEG) there are
strong peaks for both circular polarisations of light, whose dipole strengths increase
linearly with magnetic field. We find that the single-particle electron-hole symmetry of
graphene leads to a duality between the spectra of collective modes for the positively
charged donor impurity, D+, and the negatively charged acceptor impurity, A−. The
duality shows up as a set of complementary magneto-absorption peaks, which are
active in different circular polarizations.
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