MATHEMATICA

What it cam alo for you.

Overview

- Uses of Mathematica
- How the program works
- Language rules
- EXAMPLES!

Background

- Created by Stephen Wolfram and his team Wolfram Research.
- Version 1.0 was released in 1988.
- Latest version is Mathematica 6.0 released last year.

Stephen Wolfram: creator of Mathematica

Q: What is Mathematica?

A: An interactive program with a vast range of uses:

- Numerical calculations to required precision
- Symbolic calculations/ simplification of algebraic expressions
- Matrices and linear algebra
- Graphics and data visualisation
- Calculus
- Equation solving (numeric and symbolic)
- Optimization (?)
- Statistics
- Polynomial algebra
- Discrete mathematics
- Number theory
- Logic and Boolean algebra
- Computational systems e.g. cellular automata

Structure

Composed of two parts:

- Kernel: interprets code, returns results, stores definitions (be careful)
- Front end:
- provides an interface for inputting Mathematica code and viewing output (including graphics and sound) called a notebook
- contains a library of over one thousand functions
- has tools such as a debugger and automatic syntax colouring

More on notebooks

- Notebooks are made up of cells.
- There are different cell types e.g. "Title", "Input", "Output" with associated properties
- To evaluate a cell, highlight it and then press shift-enter
- To stop evaluation of code, in the tool bar click on Kernel, then Quit Kernel

Language rules

- ; is used at the end of the line from which no output is required
- Built-in functions begin with a capital letter
- [] are used to enclose function arguments
- \{ \} are used to enclose list elements
- () are used to indicate grouping of terms
- expr/ $x \longrightarrow y$ means "replace x by y in expr"
- expr/ .rules means "apply rules to transform each subpart of expr" (also see Replace)
- = assigns a value to a variable
- == expresses equality
- := defines a function
- x_denotes an arbitrary expression named x

Language rules (2)

- Any part of the code can be commented out by enclosing it in (* *).
- Variable names can be almost anything, BUT
- must not begin with a number or contain whitespace, as this means multiply (see later)
- must not be protected e.g. the name of an internal function
- BE CAREFUL - variable definitions remain until you reassign them or Clear them or quit the kernel (or end the session).

Mathematica as a calculator

- Contains mathematical and physical constants e.g. i (I), e (E) and π (Pi)
- Addition +

Subtraction
Multiplication * or blank space
Division /
Exponentiation ^

- Can carry out calculations to any precision - see N.
- Can do symbolic calculations and simplification of complicated algebraic expressions -see Simplify and FullSimplify.

Creating your own functions

Use an underscore for the dummy variable and :=
e.g. $f\left[x_{-}\right]:=N\left[\log [\operatorname{Abs}[x]]+x^{\wedge} 3\right]$

Do and If

- Do [expr, $\left\{i, i_{\min }, i_{\max }, d i\right\}$] evaluates expr with i successively taking the values $i_{\text {min }}$ through $i_{\max }$ in steps of $d i$.
- If $[$ condition, t, f, u] evaluates t if condition evaluates to True, f if it evaluates to False and u if it evaluates to neither.

Calculus

- See D to differentiate.
- Can do both definite and indefinite integrals - see Integrate
- For a numeric approximation to an integral use NIntegrate.

Creating tensors

- There are many different ways to handle tensors in Mathematica.
- Lists are enclosed in braces \{ \}, with the elements separated by commas.
- They can have symbolic or numeric entries.
- Table is most appropriate for creating 1D lists, where the entries are calculated according to a specified rule.
- Nested lists can be used to create tensors
- use Array (or SparseArray) to do this
- elements may be specified when the array is created by using Function or later on

Tensor operations

- To extract elements use Part or
[[]]
- To append elements to lists, delete elements etc., see Append, Delete, ReplacePart
- Can change the number of levels in a list using Flatten or Partition
- Vector specific operations: Dot, Cross, Norm
- Matrix specific operations: Inverse, Det, Eigensystem, RowReduce
- Even more impressive:

SingularValueDecomposition, JordanDecomposition

Equation solving

- Use Solve to solve an equation with an exact solution, including a symbolic solution.
- Use NSolve or FindRoot to obtain a numerical approximation to the solution.
- Use DSolve or NDSolve for differential equations.
- To use solutions need to use expr/ $x \rightarrow y$.

Importing/exporting data

- Need to set your working directory - see SetDirectory.
- To import data use Get, OpenRead, ReadList or Import.
- To export data use Put or Export.

Graphics

- Mathematica allows the representation of data in many different formats:
- 1D list plots, parametric plots
- 3D scatter plots
- 3D data reconstruction
- Contour plots
- Matrix plots
- Pie charts, bar charts, histograms, statistical plots, vector fields (need to use special packages)
- Numerous options are available to change the appearance of the graph.
- Use Show to display combined graphics objects

Using packages

- Sometimes you may want to use specialist packages that are not automatically loaded when you start a session.
- Use Needs.

Optimisation

- Facilities for numeric and symbolic, global and local, constrained and unconstrained optimisation.
- Numeric:
> local - FindMinimum, FindMaximum
$>$ fitting - FindFit
> global - NMinimize, NMaximize
- Symbolic: Minimize, Maximize
- The above functions have been updated for Mathematica 6.0.

Taking it further

- Mathematica has an excellent help menu (shift-F1)
- Can get help within a notebook by typing ?FunctionName
- Website: http://www.wolfram.com/products/mathem atica/index.html
- To use Mathematica for parallel programming, look up gridMathematica.

