
Upgrading Report

(from MPhil to PhD)

Proposed title: Designing a Series of

Clinical Trials

by

Siew Wan Hee

University of Warwick, Warwick Medical School

October 2009



Contents

List of Tables iii

List of Figures iv

Declaration v

Abstract vi

1 Clinical trial 1
1.1 Characteristics of clinical trial . . . . . . . . . . . . . . . . . . 1
1.2 Brief history of clinical trial . . . . . . . . . . . . . . . . . . . 3
1.3 Designs of clinical trial . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Phase I . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Phase II . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.3 Phase III . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.4 Phase IV . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Statistical terms and notation 15
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Discrete distribution . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Continuous distribution . . . . . . . . . . . . . . . . . . . . . 19
2.4 Estimation and confidence set . . . . . . . . . . . . . . . . . . 21
2.5 Statistical inference . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Bayesian method . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7 Bayesian decision method . . . . . . . . . . . . . . . . . . . . 27

3 Literature review 28
3.1 Frequentist methods . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Bayesian methods . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 A series of phase II trials . . . . . . . . . . . . . . . . . . . . . 38
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

i



4 Design of a series of clinical trials 47
4.1 Assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1 Model 1: Maximisation of assurance . . . . . . . . . . 52
4.1.2 Model 2: Minimisation of the expected net loss . . . . 55
4.1.3 Model 3: Minimisation of the total cost . . . . . . . . . 58

5 Further work 68
5.1 Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Proposed headings for the thesis . . . . . . . . . . . . . . . . . 70

6 Completed and planned training 72

Bibliography 76



List of Tables

4.1 Optimal sample sizes for Model 2 . . . . . . . . . . . . . . . . 65
4.2 Optimal sample sizes for Model 2 with various f values . . . . 66
4.3 Optimal sample sizes for Model 3 . . . . . . . . . . . . . . . . 67

6.1 Diary of 2009/2010 . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Diary of 2010/2011 . . . . . . . . . . . . . . . . . . . . . . . . 75

iii



List of Figures

1.1 A “3 + 3” design of phase I clinical trial . . . . . . . . . . . . 8

2.1 Normal densities . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Beta densities . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 E(M̃) against n . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 The expected cost of conducting a series of trials against n for

Model 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 E(F ) against n with τ or σ held fixed . . . . . . . . . . . . . . 62
4.4 E(F ) against n with various values of f . . . . . . . . . . . . . 63
4.5 The expected cost of conducting a series of trials against n for

Model 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

iv



Declaration

I am aware of University regulations governing plagiarism and I declare that
this upgrading document is all my own work except where I have stated
otherwise.

Signed:

Date:

v



Abstract

In the development of a new drug, the design of clinical trials is usually

based on consideration of a single trial at a time. Essentially, resources such

as patients and money are finite and limited. As such, the decision from

each trial will affect subsequent trials either in the design of the next trial or

allocation of resources to other trials. The aim of this repot is to regard a

clinical trial as part of a series of trials. The design of the clinical trial will

incorporate how to allocate resources, i.e. patient and cost, into each trial

such that the use of these resources is optimised while at the same time the

power of the whole series of trial is maximised. The proposed approach uses a

combination of frequentist, i.e. hypothesis inference, and Bayesian methods

to find the smallest sample size to maximise the expected power of each trial

and minimise the cost of a series of trial. The structure of this report is as

follows. Chapter 1 introduces the types of clinical trials, Chapter 2 introduces

the statistical terms and notation frequently encountered in the sample size

determination literature and used in this report. Chapter 3 presents a review

of literature on sample size determination for phase II clinical trials. Chapter

4 presents the designs of a series of clinical trials, Chapter 5 proposes further

work and extensions to be done and finally, Chapter 6 details the courses

that I have attended and my plans for the next two academic years.
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Chapter 1

Clinical trial

A clinical trial is an experiment conducted in human beings to study and

assess the effect of an intervention. The intervention could be a new drug,

medical device, procedures, etc. In this report, only clinical trials involving

a drug or a combination of drugs which is also referred as a regimen will be

discussed. As such terms such as “therapy”, “treatment” and “drug” will be

used interchangeably throughout this report.

1.1 Characteristics of clinical trial

A clinical trial is performed prospectively and not retrospectively [Friedman

et al., 1998]. Patients in the trial are followed and observed directly forward

from the time of initiation of the trial. The primary objective of a clinical

trial is to compare the effect of an experimental treatment with a control

treatment. A control treatment could be a non-active intervention which

means that the “treatment” is a placebo or no intervention at all or due

1



Chapter 1. Clinical trial 2

to ethical reason the control treatment could be an “existing established

effective treatment” [Fitzpatrick, 2005].

Patients are recruited and assigned to either the experimental or the

control group. At baseline, patients recruited to either group should be suffi-

ciently similar. However, in nature, patients are not uniform physiologically

and thus, randomisation ensures that unknown factors that could influence

the effects of treatment are reasonably well balanced between the treatment

arms. Therefore, to ensure that the comparison can be done confidently

patients are randomised to the treatment arms.

Biases can be introduced either knowingly or unknowingly in clinical tri-

als. For example, investigators may selectively choose patients with better

prognosis to the experimental arm or patients may have “convinced” them-

selves that they are faring better if they have known that they were given the

experimental treatment. Henceforth, to minimise these biases and to ensure

an objective assessment of the effects of treatments, blinding is introduced.

A single blind trial is one in which the patient does not know what treatment

has been assigned to him/her. A double blind trial is one in which neither the

patient nor the investigator or the assessor know what treatment has been

assigned. Some trials are triple blind. In such trials, the statistical analyst

is also blinded to the treatment that has been assigned to the patient.

The trial will only be “unblinded” after the final analyses and conclusions

have been made. In the words of Lilienfeld [1982], these measures are intro-

duced to achieve the goal of ceteris paribus, that is, “all other factors being

equal”.
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1.2 Brief history of clinical trial

The precise definition and characteristics of a clinical trial we have today

are formalised rather recently compared to the long history of medical re-

search. Lilienfeld [1982] chronicled the development and evolution of the idea

of clinical trial we know today. He quoted the earliest recorded account of

a comparative study in the first chapter of the Book of Daniel from the Old

Testament. From verses 12 to 15 Daniel proposed that two groups of servants

to be given different diet for ten days. One group would have the same rich

diet as the king’s and another with only vegetables and water to drink. At

the end of ten days, the latter group appeared fairer and healthier than the

former.

A more modern written record of comparison of treatments was the fa-

mous experiment conducted by James Lind to examine the treatment of

scurvy for sailors onboard. On a sea voyage on board Salisbury, twelve sailors

with scurvy were divided into six groups with two sailors in each group. Six

treatments were evaluated and they were: (1) cider, (2) diluted sulphuric

acid, (3) vinegar, (4) seawater, (5) a mixture of several foods including nut-

meg and garlic, and (6) oranges and lemons [Hackshaw, 2009]. After six

days one of the sailors given oranges and lemons was fit for duty whereas the

other one showed the most signs of improvements compared to the other ten

patients. Although Lind noted the value of the fruits, they were not recom-

mended as treatment for the disease mainly because of the expense of such

fruits compare to “pure dry air” which was the recommended treatment on

board after the trial.
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Lind’s experiment had an important feature of clinical trial: comparing

two or more interventions. However, he admitted that there was “favouritism”

in assigning the patients to the treatment arms. “Two of the worst patients

. . . were put under a course of sea-water.” Lind might have had a belief that

the sea water might be the best treatment. In today modern time, randomi-

sation would be able to eliminate the bias in selecting patients to a treatment

arm that is perceived to be more effective.

Randomisation was first proposed by R. A. Fisher in the experimental

study of agriculture. Plots of crops were randomised to receive different treat-

ments and he argued that the randomisation would simulate independence

and as such, the statistical analysis which is often based on the assumption

of independence would then be valid.

One of the earliest clinical trials that adopted a randomisation procedure

was a trial conducted in the University of Minnesota where at the beginning

of the university term, students were asked to volunteer to participate in

a cold vaccination trial. They were then randomly assigned to either the

experimental or the control group. Although the students and the attend-

ing physicians were blinded of the assigned treatment, the randomisation

assignment was done systematically where if a student was assigned to an

experimental arm then the following student would be assigned to the control

group. A problem with such systematic randomisation is that it is easy to

predict the treatment the next student would receive.

One of the first reported clinical trial that used random numbers to ran-

domise patients into treatment groups is a trial involving treatment of strep-

tomycin in pulmonary tuberculosis by the Medical Research Council of Great
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Britain in 1948. This trial was a single blind trial, that is, only the two radi-

ologists assigned to read the x-rays independently were blinded of the treat-

ments assigned to the patients. Both patients and the attending physicians

were told of the treatment that they were receiving.

Following the success of the streptomycin trial, more and more compar-

ative trials started to incorporate randomisation and blinding procedures.

Indeed the characteristics of clinical trials mentioned by Lilienfeld [1982];

comparative, randomise and blinded have become the gold standard for clin-

ical trials. For further readings, please refer to Machin et al. [2006, Chap. 1]

and Meinert and Tonascia [1986, Chap. 1] for summary of the history and

development of clinical trials, and Bull [1959] for a scholarly account on the

historical development of clinical trials.

1.3 Designs of clinical trial

The clinical development of a new drug is usually divided into four phases

[Machin et al., 2006, pp. 13-37]. The nomenclature of phase I, II, III and

IV has thus been developed for the purpose of classifying the objective and

goal of each phase of testing in the drug development programme. Broadly,

the purpose of a phase I trial is to study the human pharmacology and

safety, phase II is to explore therapeutic activity, phase III is to demonstrate

or confirm the therapeutic activity observed in phase II, and finally phase

IV is conducted after drug approval to understand better the usage of the

therapeutic agent according to the approved indication [Fitzpatrick, 2005].

Phase I and II trials are collectively known as early phase trials and they
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are typically conducted to ascertain three objectives: (1) to document the

experience (such as the dosage, the route of administration and schedule of

the drug, and the type of patient) and develop a protocol for reproducibility,

(2) to learn any unacceptable toxicity and adverse event, and (3) to determine

if the treatment is efficacious before it is brought forward for more vigorous

testing in larger phase III trials [Schoenfeld, 1980].

Traditionally and in an ideal situation the development of a new drug

would go through a series of clinical trials sequentially through phase I to

IV. This is because the results from the preceding phase are used to motivate

the design of the next phase. In practice, the development plan may not go

through the same sequence. It is rather common for the results from a phase

II exploratory study to prompt additional human pharmacology studies or

to modify the strategy of drug administration or to lead to more studies to

investigate the dose-response relationship. Or the results from a phase III

trial may prompt another phase III trial by narrowing the disease population.

1.3.1 Phase I

Friedman et al. [1998] defined a phase I study as an introductory study where

a drug is first tested in humans. In most diseases, healthy volunteers are

recruited to participate in the phase I trial. Hence, the term “participants”

will be used as the subjects of phase I trial. An exception is oncology trials

where the treatments are highly toxic, and only cancer patients are recruited

for phase I trial. Usually, the patients have already tried and failed on the

existing standard therapies. Green et al. [2003] gives a general overview on
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the design of oncology trials and Crowley and Ankerst [2006] provides more

technical details.

The main objective of a phase I trial is to estimate the maximum dose level

that is acceptable for a participant without causing unacceptable toxicity.

This dose is conventionally known as the maximally tolerated dose (MTD)

and the unacceptable toxicity is known as the dose limiting toxicity (DLT).

A commonly used phase I design is known as the “3 + 3” design. In this

design, a few doses are identified for consideration. Let d1 be the starting

dose which is extrapolated from animal studies and the highest dose level

planned for the trial be dm. Supposed that the other dose levels in between

are d2, d3, . . . , dm−1. A cohort of three participants will be recruited to a

dose level, di (i = 1, 2, . . . ,m), and if no patient experiences any DLT then

another cohort of three participants will be recruited to dose level, di+1. If

however, one participant experiences any of the predefined DLT, then another

cohort of three participants will be recruited to the same dose level, and if

no further DLT is observed among this new cohort of participants the dose

level is escalated. If at any dose level at least two participants experience any

DLT, then the trial will stop and the dose level preceding it will be declared

MTD (Figure 1.1). If the dose level dm is reached with no DLT observed

then the investigator may declare dm as the MTD or another phase I trial

may be initiated.

Note that the primary objective of a phase I trial is not comparative

in nature and hence, there is no statistical test involvement. Due to the

uncertainty from the escalation and de-escalation of dose level, the total

number of patients needed is hard to fix during the planning and designing
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0 out of 3 patients 

experience DLT
At least 2 out of 3 patients 

experience DLT

Evaluate three patients at 

dose level d
i
(i = 1, 2,…, m)

Dose escalation:

Evaluate three patients at 

dose level d
i + 1

Stop trial:

Declare dose level d
i – 1

as the MTD

At least 2 out of 6 patients 

experience DLT

1 out of 6 patients 

experience DLT

dose level d
i + 1

Evaluate an additional three 

patients at dose level d
i

1 out of 3 patients 

experience DLT

as the MTD

Abbreviations: DLT, dose limiting toxicity; MTD, maximally tolerated dose.

Figure 1.1: A “3 + 3” design to establish a maximum tolerated dose (MTD)
in a phase I clinical trial.

stages of the clinical trial. However, the maximum number of patients is

often stated in advance in the trial protocol. In practice, usually three to

eigth dose levels are investigated in a trial. Hence, the maximum number of

patients ranges from 18 (a maximum of 6 patients in each dose level) to 42.

Although the “3+3” design is commonly practised in most phase I clinical

trials because of its simple implementation, there are other strategies that

have been recommended by other authors especially for oncology trials. As

mentioned earlier, patients are recruited for phase I oncology trial instead of

healthy volunteers. Sometimes the first few dose levels may be less efficacious,
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and the “3 + 3” design would inadvertently recruited too many patients to

suboptimal doses. O’Quigley et al. [1990] presented a Bayesian design, the

continual reassessment method (CRM), that claims to subject less patients

to the low inferior dosages.

Further technical details of phase I design are available in Machin et al.

[2009] and other references cited therein.

1.3.2 Phase II

Once the MTD is established, the treatment is further evaluated in a phase II

trial to investigate efficacy. Both Gehan [1961] and Schoenfeld [1980] describe

that only one group of patient is selected for the trial and they are usually a

homogeneous group in terms of disease and stage of disease.

Although the purpose of the phase II study is to explore for efficacy, the

primary endpoint may be a surrogate endpoint. For example, in oncology

trials, typically the survival rate or remission rate is of importance. However,

it takes a long time to capture adequately these variables and it is not feasible

to have long follow up duration in a phase II trial [Schoenfeld, 1980]. Hence, a

surrogate endpoint such as tumour shrinkage is used as the primary endpoint.

It is generally acceptable that if the tumour shrinks by a considerable size,

the patient will have longer survival. Thus, on the one hand, the tumour

shrinkage may be considered as a continuous response where the change of

the sum of the longest diameter is used as an endpoint.

On the other hand the tumour shrinkage may be considered as a binary

response where either the sum of the longest diameter of the target lesion
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decreases at least 30% according to the Response Evaluation Criteria in Solid

Tumors (RECIST) criteria [Therasse et al., 2000] and hence considered as

a success or the dimension remains unchanged or increases by at least 20%

then it is considered as a failure.

The phase II trial is the first trial in a drug development programme to

compare the efficacy of the drug formally. As such, the problem is formulated

statistically into a hypothesis test. However, it is not necessary to have a

control arm in a phase II trial. In an example given by Gehan, suppose that

there is a difference of 10% between standard and experimental treatments

when the standard treatment shows 5% effectiveness. Thus, by controlling

the false positive (claiming the new treatment is effective when in fact it is

not which is also known as type I error) and false negative (claiming the new

treatment is not effective when in fact it is which is also known as type II

error) rates at 0.05 and 0.10, respectively, the sample size required is 191

for each arm. To have so many patients in a phase II trial is a waste of

resources, namely, patients, effort, time and money. Suppose that only the

experimental treatment is considered in a phase II trial then the total number

of patients will be reduced from 382 to 79 [Schoenfeld, 1980].

In addition, the outcome of a phase II trial is to choose between to bring

the treatment forward for further testing in confirmative phase III trial and

to stop the treatment from further testing. Therefore, it is important to stop

futile trials as quick as possible and ensure that effective drugs are given the

go-ahead for further testing with some degree of confidence. This decision

is rather straightforward and it is another reason why a standard arm is

not necessary for statistical analysis such as those found in proof-of-concept
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phase III trial. Therefore, the hypothesis test compares the new treatment

to a historical control.

Some of the common designs of phase II trials are single-stage and two-

stage designs. These are explained in more detail below. Other authors have

proposed multiple stage designs [Chen, 1997, Ensign et al., 1994] and these are

usually extension of the single- and two-stage designs. Most of the works on

the designs of phase II trials originate from evaluation of anticancer therapies.

Also, most of the approaches consider a binary response as mentioned earlier.

Briefly, in the single-stage design, a sample size is determined for the trial and

analysis is done after all the data have been gathered. A two-stage design is

akin to a single-stage that is split into two. In the first part of the two-stage

which is simply known as first stage, a total of n1 patients is recruited. Then

the data are analysed and if a minimum number of successes is observed then

a further n2 patients are recruited to pinpoint the accuracy of the effectiveness

of the drug. If however, the minimum number of successes is not observed,

then the drug will be rejected and not recommended for further testing.

Another type of design in phase II is a sequential design where the hy-

pothesis is repeatedly tested [Mariani and Marubini, 1996]. There are two

approaches in this design. In the first approach, each patient is recruited

sequentially, and an analysis is performed when the outcome from each new

patient is available and added on to the accummulated data. There are three

possible decisions from each analysis: (1) stop the phase II trial and declare

the new treatment is not worthy for recommendation to phase III trial, (2)

stop the phase II trial and recommend the new treatment to phase III trial,

and (3) continue with the phase II trial and recruit the next patient.
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In another approach, a group of patients are recruited and their outcomes

are pooled for analysis. From the result, the same choices of decisions are

available, (1) abandon the phase II trial, (2) proceed to phase III trial, and

(3) recruit another group of patients and use the accumulated data for the

next analysis to test the hypothesis.

Although a phase II trial does not necessitate a control arm, there are

some designs especially in oncology trials where there are two or more treat-

ment arms in a trial. The treatment arms involved in a randomised phase II

trial are all experimental treatments. The aim of randomised phase II trial is

not to compare definitively but to identify a promising treatment for further

testing. Such designs are known as selection designs [Simon et al., 1985].

A review by Mariani and Marubini [1996] provides a general overview of

phase II clinical trials especially in the application of oncology trials. Other

texts by Machin et al. [2009] and Stallard [2008] give very good examples of

designs and statistical methods of phase II clinical trials.

The sample size determination of phase II trial can be broadly categorised

into two methods: (a) frequentist, and (b) Bayesian [Adcock, 1997]. The

former is based on an inferential method where a statistical method is used

to infer the hypothesized efficacy of the treatment from the observed patients

responses. The latter method can be further classified into two groups of

techniques, namely inference on the treatment efficacy and a decision problem

where the optimal course of action based on the merits and demerits of

each viable decision. The sample size determination of phase II trial will be

discussed in further details in Chapter 3.
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1.3.3 Phase III

A phase III trial is a definitive clinical trial that is comparative, randomised

and blinded. It is a large confirmatory trial where the results are submitted

to regulatory authorities for drug approval and is conducted with at least a

control and intervention groups. In large trials such as phase III trial, the

probabilities of both type I and II errors are minimised because the sample

size is large.

Due to the large sample size required in a phase III trial, it is mainly con-

ducted concurrently by a few centres and sometimes known as multicentre

trials. The advantage is the possibility of wider patient population recruit-

ment and a broad range of clinical settings that is more typical of future use.

There may arise some situations in phase III trials where it is imperative

to check the assumption of the original design, the efficacy and/or safety of

the experimental treatment before the formal completion of the clinical trial.

Hence interim analysis (analyses) is (are) built into the trial protocol with

stopping rules defined to allow the trials to stop early if the superiority or

inferiority of the experimental treatment is established.[ICH E9, 1998]

The sample size determination of phase III trial is traditionally based

on the classical approach of hypothesis testing. The Bayesian sample size

determination is less popular in phase III trial mainly because it is usually

associated with sequential procedures which may be unable to give a fixed

sample size at the design stage of the clinical trial, and some of its computa-

tions require complicated algorithm. [Pezeshk, 2003] However, in the recent

years the developments of researches based on Bayesian sample size determi-
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nation has increased and gained further stronghold in clinical trials. Adcock

[1997] gave a very good review of sample size determination for both classi-

cal frequentist and Bayesian approaches. Although the review is meant for

general applicability, it is easily adapted for clinical trial settings. Pezeshk

[2003] on the other hand, reviewed Bayesian methodology used in clinical

trials. Both authors have claimed that their reviews are not meant to be

comprehensive and strongly encouraged readers to refer to references cited

therein for further thorough readings.

1.3.4 Phase IV

Phase IV trials are usually undertaken after the registration or during the

registration of a drug to monitor and discover more about the safety of the

drug. Sometimes, the trial also assess for efficacy in different populations.

The sample size in such a trial is very large and may not have a control arm.

In the following chapters, we will not discuss the designs of phase I and

IV trials. Hence, in particular we shall assume that the dosage and safety

issues of the new drug or treatment regimen has been addressed in phase I

trials.



Chapter 2

Statistical terms and notation

One of the key issues in the planning of a clinical trial is the sample size

determination. Following the guidelines in ‘Statistical Principles for Clinical

Trials’ of the International Conference on Harmonisation of Technical Re-

quirements for Registration of Pharmaceuticals for Human Use (ICH E9),

“the number of subjects in a clinical trial should always be large enough to

provide a reliable answer to the questions addressed.” [1998] In the determi-

nation of an appropriate sample size, it is not a simple matter of picking a

number from a sample size table but it necessitates various information such

as the objective of the trial, patient population, the maximum allowable er-

ror rates, accrual rate of patient, etc. In this chapter, we will introduce and

explain the statistical principles and methodology commonly occurred in the

sample size determination of clinical trials.

15
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2.1 Notation

The sample space is a mathematical set that represents all possible observa-

tions in a situation under a specific trial. The sample space can be either

continuous or discrete. If the sample space is continuous, it is said to have

some measure such as length and if it is discrete then it is finite or countably

infinite.

In each trial an outcome of interest is made and sometimes instead of

being interested in the outcome itself, we are interested in some function of

the outcome. This function is known as a random variable which is defined

on the sample space. Suppose X is a random variable, then each possible

observation in X is denoted as x. In this report, X is assumed to take values

on the real line.

There exists an inherent variability that is beyond the observer’s control

when observing an outcome. This variability most often can be described

by a probability distribution. Assume that for a discrete sample space, x =

(x1, x2, . . .) is an ordered set of possible observations, then there is a function

p defined as

p(xi) = Pr(X = xi), i = 1, 2, . . .

The function p(xi) is a non-negative function (p(xi) ≥ 0) and the sum of all

the masses associated with each element in the space is unity (
∑

i p(xi) = 1).

This function is called probability mass function. The equivalent of proba-

bility mass function for a continuous sample space is known as probability

density function which is also a non-negative function of the real variable x

such that
∫∞
−∞ p(x) dx = 1. For an interval of [a, b], the probability that X
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falls into the interval is the area under the density function between a and b;

Pr(a ≤ X ≤ b) =

∫ b

a

f(x) dx.

Note that for X is continuous, Pr(a ≤ X ≤ b) = Pr(a ≤ X < b) = Pr(a <

X ≤ b) = Pr(a < X < b). Suppose that b → a, then Pr(a ≤ X ≤ a) =∫ a
a
f(x) dx = 0 which means that the probability that a continuous X takes

on a fixed value is 0.

The cumulative distribution function, F , is also frequently encountered

and it is expressed in terms of p(x),

F (x) = Pr(X ≤ x) =


∑x

i Pr(X = i), discrete distribution∫ x
−∞ f(u) du, continuous distribution

Suppose that in a trial the probability of success is θ, we do not know

what value it is except for some value between 0 and 1. This θ is known as

a parameter and the mathematical set that θ belongs to is usually denoted

by Θ. In this report, we will assume that the probability distribution is of

some known form depending on some unknown parameters.

The density function is now rewritten as pθ(x) or p(x, θ) and interpreted

as the probability density of a real x when θ is the true parameter or for

a discrete x, the probability of point x when θ is the true parameter. The

function p(·, θ) is the density function on the sample space X, and the func-

tion p(x, ·) is the function of the parameter space Θ which is also known as

the likelihood function. The likelihood function is an important function as

it summarises all the information the observed data can provide about the
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parameter θ.

2.2 Discrete distribution

A random variable that only takes two values: success and failure with prob-

abilities p and 1− p in a trial, respectively is known as a Bernoulli random

variable. Supposed a numerical 1 is used to denote success and 0 a failure,

then the probability mass function is,

p(x) =

 px(1− p)1−x, if x = 0 or x = 1

0, otherwise.

Suppose that n independent patients are recruited and the total number

of successes, X, is observed. Then X is a binomial random variable with

index n and parameter p. The binomial distribution is constructed from n

independent Bernoulli trials and the sequence of the occurrence of successes

is not important. Thus there are
(
n
x

)
ways in which a total number of x

successes may occur in n trials. The probability mass function is

p(x) = Pr(X = x) =

(
n

x

)
px(1− p)n−x.

The statement of X following a binomial distribution with (n, p) can be

“rewritten” as X ∼ B(n, p).

The geometric distribution is another distribution constructed from Bernoulli

trials. The difference is that there is an infinite number of trials. A sequence

of trials are conducted and the probability of a success is p. The trial will
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stop when the first success is observed. Let X be the total number of trials

including the first successful outcome and following from the independence

of the trials, the probability mass function is,

p(x) = Pr(X = x) = (1− p)x−1p, x = 1, 2, . . .

Note that
∑∞

x=1(1 − p)x−1p = p
∑∞

x=1(1 − p)x−1 and by the expression giv-

ing the sum of a geometric series we have
∑∞

x=1(1 − p)x−1 = 1
p
, therefore,∑∞

x=1(1− p)x−1p = 1.

2.3 Continuous distribution

The simplest continuous distribution is the uniform distribution. The random

variable X is said to have a uniform distribution if its probability density

function is given by

p(x) =

 (b− a)−1, a < x < b

0, otherwise.

A special case of a uniform distribution is for a = 0 and b = 1 when p(x) =

1, 0 < x < 1.

The normal distribution which is also known as the Gaussian distribution

is the most important continuous distribution and “plays a central role in

probability and statistics” [Rice, 1995]. The probability density function of
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a normal distribution is given by

p(x) =
1√

2πσ2
e−(x−θ)2/2σ2

,

where the parameters θ and σ are the mean and standard deviation of the

normal density, respectively. The cumulative distribution function is

F (x) =

∫ x

−∞

1√
2πσ2

e−(u−θ)2/2σ2

du

Suppose X is a random variable that follows the normal distribution

with parameters θ and σ, the statement can be “rewritten” as X ∼ N(θ, σ2).

The density of the normal distribution integrates to 1 in the whole space of

(−∞,∞). However, the cumulative distribution function cannot be evalu-

ated in a closed form but has to be computed numerically.

A special case of the normal distribution is the standard normal distri-

bution where the θ = 0 and σ2 = 1. Its density function is usually denoted

by φ(x) = 1√
2π
e−x

2/2 and its cumulative distribution function is denoted

by Φ(x) =
∫ x
−∞

1√
2π
e−u

2/2 du. Note that the relationship between a normal

and standard normal distribution can be stated by: p(x) = 1
σ
φ
(
x−θ
σ

)
and

F (x) = Φ(x−θ
σ

).

The normal distribution when plotted in a plane of f(x) against x has

a bell-shaped curve (Fig. 2.1). It is symmetric about its mean, θ, and the

shape of the curve, either narrow or wide, depends on the standard deviation,

σ.

The beta distribution is a distribution that has very flexible shapes with
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(b) σ = 1

Figure 2.1: Normal densities (a) σ of 0.5 (dotted), 1 (solid), and 2 (dashed),
and (b)θ of −1 (dashed), 0 (solid), and 1 (dotted).

two parameters a and b. Its density function is,

p(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1, 0 ≤ x ≤ 1, a, b > 0,

where Γ(x) =
∫∞

0
ux−1e−u du is a gamma function if x is a non-integer and

a simple factorial function, Γ(x) = (x − 1)! when x is an integer. As shown

in Figure 2.2, the beta density has very flexible shapes, from flat to narrow

curves with various values of a and b. Note that when a = 1, b = 1, the beta

distribution is a uniform distribution.

2.4 Estimation and confidence set

Due to the inherent variability in observing an outcome in each situation,

a probability distribution is used to describe the variability. However, the
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Figure 2.2: Beta densities with various values of a and b.

probability distribution is also unknown to us. The inference problem is thus

to infer something of the true distribution or rather the true parameter - as

we are assuming that the distribution is known with unknown parameter -

from the observed outcomes. The numerical values of the observations are

used to estimate the unknown parameter.

For example, in a trial with n independent patients and we observed

either a success or failure from each of them. Suppose that the probability

of success is θ, it seems reasonable that the proportion of successes, k/n,
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where k is the total number of successes observed is a ‘good’ estimate of θ.

There are a few criteria that decides how ‘good’ an estimator is in estimating

the parameter. The discussion of these criteria are rather technical and so

will not be discussed here. Instead readers are encouraged to refer to more

technical texts such as Silvey [1975] and Cox [2006].

Although an estimator may be a good approximate of the plausible pa-

rameter, it is unlikely that the estimate is the same as the true parameter at

all times under all circumstances. Therefore, an interval of plausible param-

eter value is reported and this interval is also known as confidence interval.

To construct a confidence interval, let CL and CU be two random variables

where CL < CU . The probability that the parameter θ is within the interval

(CL, CU) under the assumption that θ is the true parameter is

Pr(CL ≤ θ ≤ CU) = 1− α (2.1)

The statement in (2.1) is interpreted as: the probability that the true

value of θ is within this random interval is 1 − α or equivalently for any

observed x we are 100(1− α)% confident that the true parameter will lie in

this interval.

2.5 Statistical inference

Hypothesis testing is the theory of inferring the nature of the true parame-

ter from the observations. A statement is necessary to imply that the true

parameter θ belongs to a subset of the parameter space Θ. This statement
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is known as an hypothesis. The testing of the hypothesis is to use statistical

methods to check if the observations are consistent with the stated hypoth-

esis or not. Silvey [1975] summarised succintly that a statistical rule is used

to assign “each possible observation to one of two exclusive categories: ‘con-

sistent with the hypothesis under consideration’ and ‘not consistent with this

hypothesis’.”

In the classical approach of hypothesis testing which is also known as the

frequentist method, there are two hypotheses. The first is the null hypothesis

which states that the parameter θ belongs to ω which is a subset of Θ. The

other hypothesis is simply known as the alternative hypothesis which states

that the parameter θ does not belong to the subset ω but belongs to Θ−ω. If

there is only one element in ω, the hypothesis is known as a simple hypothesis

because it is in its simplest form, and similarly, if there is only one element in

Θ−ω the alternative hypothesis is a simple alternative hypothesis. Suppose

that the elements in ω and Θ−ω are θ0 and θ1, respectively, the hypotheses

can be formulated as

H0 : θ = θ0 against H1 : θ = θA,

where the statement H0 is the null hypothesis and H1 is the alternative

hypothesis. Note that the null hypothesis is always assumed to be true until

proven to be otherwise.

Two possible decisions can be made based on the observed data at the

end of the trial: (1) reject the null hypothesis, or (2) do not reject the null

hypothesis. The decision is made on the basis of a test statistic, T (X). The
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choice of T (X) depends on the distribution that is assumed and the specified

hypotheses. Note that a test statistic may or may not be an estimator of

the parameter. If t is the observed value, the probability Pr(T ≥ t) under

the assumption that the null hypothesis is true is known as p-value and it

has a known distribution under H0 which is the uniform distribution. The p-

value is interpreted as the probability of the statistic being as large or larger

than the observed value if the null hypothesis is true.

In making any decision from the hypothesis testing, we may not always be

100% correct. Inevitably, errors may occur when rejecting or not rejecting

the H0. The type I error is an error incurred when the null hypothesis is

rejected when it is true. Another type of error that can be incurred is the

type II error. It is an error incurred when the null hypothesis is accepted

when it is false.

The consequence of type I error is usually considered to be graver than

that of making a type II error. Hence, the probability of making such error

is capped by a predetermined value, generally denoted by α. Although the

choice of α could be arbitrarily, it is customary to have α at small values

such as 0.1, 0.05 or 0.01.

The probability of a type II error is also controlled but now it is under the

assumption that the alternative hypothesis is true. The maximum allowable

probability of type II error is generally denoted by β. The probability that

H0 is rejected when it is false is simply 1−β. This probability is also known

as the power of the test. Customary, β is set at some small values such as

0.2, 0.1 or 0.05, and the corresponding power is 0.8, 0.9, or 0.95, respectively.
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2.6 Bayesian method

The Bayesian statistical inference technique extends the frequentist method

by proposing that the parameter θ is random, that is, it has its own proba-

bility density function (probability mass function if θ is a discrete variable)

which is denoted by p(θ). Note that for convenience the term density will be

used for both continuous and discrete variables.

Before any data and evidence are available from the experiment, the

investigator and statistician provide some reasonable opinion concerning the

probable value of the parameter. As such, the density p(θ) is known as a prior

density. Suppose now some data x have been observed whose probability of

occurrence is assumed to depend on the random parameter θ, it is expressed

as, p(x|θ). This is the likelihood function. Due to the randomness of θ the

marginal density of x is given by the density, p(x|θ), averaged over all the

possible values of θ, that is, pX(x) =
∫
θ
p(x|θ)p(θ) dθ.

The two sources of information (prior distribution and likelihood func-

tion) are combined to update our prior belief of the parameter θ and thus,

its density is now denoted by p(θ|x). This density is known as posterior

distribution. By Bayes theorem, the posterior distribution is estimated by

p(θ|x) =
p(θ)p(x|θ)
pX(x)

.

As pointed out by Lindley [1971] the terms prior and posterior are not refer-

ring to the distribution but to the relationship between the distribution of

θ and the observed data x. In some circumstances, after the estimation of

the posterior density we may have a final opinion of the true parameter and
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proceed to make a decision. In other circumstances, the new opinion may

prompt further study to glean more information of the true parameter. As

such, “today’s posterior will become tomorrow’s prior”.

2.7 Bayesian decision method

Although the hypothesis testing is an inference problem, after the collection

of observations, a decision is made from a choice of two. These decisions are:

d0: The hypothesis that an unknown θ belongs to ω is true.

d1: The hypothesis is false.

Suppose that D is the decision space for all the viable decisions and d is

each of the decisions in D. Each decision has its consequence and “value”.

The “value” could be a monetary reward which is measurable in existing

scale or it could be a value that has no obvious scale of measurement, such

as happier feeling. However, to work on these “values”, numbers are assigned

and they are called utilities. The function of decision and parameter is called

the utility function and is denoted by U(d, θ). A decision problem is solved by

maximising the expected utility which is based on the posterior distribution,

∫
θ

U(d, θ)f(θ|x) dθ.

Instead of examining the utility, we may work on the loss which is the

opposite of the utility and the decision problem is solved by minimising the

loss function. For a more detailed work on the concepts and methods of

decision theory, please refer to Berger [1980].
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Literature review

There are many therapeutic agents available for clinical trials but not all

of them can be tested in large comparative trials due to limited resources

such as patients, time and money. Thus, phase II trials serve to screen

out nonpromising therapies. Many designs of phase II clinical trials are

modelled from oncology trials. As such, the primary objective is usually

to look for anti-tumour activity and a frequently used endpoint is of binary

nature: success (the tumour shrinks by at least 30% according to the RECIST

criteria [Therasse et al., 2000]) and failure (the tumour does not shrink or in

worse case scenario it increases by at least 20%).

In this chapter, the focus of the literature review is on the design of single-

arm phase II trials. Most of the designs to be discussed are based on a binary

endpoint and although the motivation behind most of these designs are for

anti-cancer therapies, they are easily adaptable for other diseases.

28
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3.1 Frequentist methods

In a review by Mariani and Marubini [1996] there are three possible types of

phase II designs for single-arm trials, namely, fixed-sample, sequential and

multi-stage designs. The simplest design of a phase II trial is the fixed-

sample design which is also known as a single-stage design where a number

of patients, n, is recruited in a trial. At the end of the trial, the observed

data are collected for analysis and a decision is made whether to reject the

null hypothesis or not. Suppose that in a clinical trial, an observation from

each patient is whether he/she is responding to the experimental drug, thus

a success (S) or a failure (F ). The primary endpoint is the number of suc-

cesses, which follows a binomial distribution. Denoting the true probability

of success by p, we wish to test the one-sided hypothesis of

H0 : p ≤ p0 vs. H1 : p ≥ pA

where p0 is the proportion for the historical control and pA is the minimum

proportion for the new treatment to achieve to warrant further investigation.

The clinical trial is designed such that both type I and II errors (of claim-

ing a treatment as promising when it is not and rejecting a treatment when

it is effective, respectively) are capped by the maximally allowable levels,

Pr(reject H0|H0 is true) = Pr(type I error) ≤ α

Pr(accept H0|H1 is true) = Pr(type II error) ≤ β. (3.1)
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Thus, the sample size is approximately,

n =

(
z1−α

√
p0(1− p0) + z1−β

√
pA(1− pA)

pA − p0

)2

(3.2)

where z(x) is the upper 100(1 − x)% percentile of a standard normal dis-

tribution [Schoenfeld, 1980]. Under the constraints of (3.1), there exists a

value k (0 < k < n) which is the minimum number of successes that need to

be attained so that the investigators can decide whether to recommend the

new treatment for further testing or not. The minimum number of successes

k depends on n and is also known as the cut-off.

In the phase II setting, the type II error is more serious than type I

error because by incurring a type II error a better drug would be denied the

chance of being studied further and patients are not able to benefit from a

more superior drug [Schoenfeld, 1980]. Suppose that a trial is planned to

determine if the new drug can increase the response rate by 20% from the

current response rate of 45% from the standard drug. By minimising the type

I error rate at α = 0.25 and the type II error rate at β = 0.10, a minimum

number of 24 patients is needed to observe a difference of 20%. If more than

50% response rate was observed then the new drug should be recommended

for further testing.

The sample size determination in (3.2) is the same as the one used in a

usual phase III trial. To ensure that the sample size estimation is smaller

for a phase II design, the difference between experimental treatment and

historical control success rate is set large or the false positive and negative

rates are set higher.
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Note that the sample size estimation based on (3.2) is an approximation

based on the normal distribution although the proportion of success has

a binomial distribution. For the example above, the actual type I and II

errors based on the binomial distribution will not be exactly 0.25 and 0.10,

respectively. Based on the 50% cut-off rate, if the true response rate was 0.45

then the probability of observing at least 13 successes is 24% and if the true

response rate was 0.65 then the probability of observing at least 13 successes

is 91%. Therefore, the actual type I and II error rates are 24% and 9%,

respectively. This problem is remedied by A’Hern [2001] who used the exact

binomial distribution to compute the sample sizes.

A model of sample size determination according to Gehan’s approach is

an example of two-stage design although when it was first proposed, Gehan

referred it as preliminary and follow-up trials where preliminary is what we

would call the first-stage, and follow-up is the second-stage [Gehan, 1961].

An example according to Gehan’s model is, suppose that the drug could

be effective in 20% or more of the patients then there would be more than

95% probability of observing at least one success in 14 consecutive patients

enrolled into the trial. This is assuming that the true effectiveness is 20% and

both α and β are fixed at 5%. If there was no success observed among the 14

patients, the drug will be rejected and not recommended for further testing.

If however, at least one success was observed, then more patients would be

recruited to pinpoint the effectiveness of the drug. The additional number

of patients to be recruited following the initial observed success(es) is chosen

so that the true probability of success “is estimated with given precision, i.e.

standard error.”[Gehan, 1961]
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Gehan’s method requires the number of successes in the first stage to

determine the sample size needed for second stage. Thus, the total number

of patients needed cannot be determined at the design stage. Simon [1989]

proposed two two-stage designs: optimum and minimax designs. In both

designs, the number of patients needed for stage one (n1) and two (n2) are

determined at the stage of design. Also, the cut-offs for stage one (k1) and

the whole trial (k) are determined in the design stage. The decision whether

to proceed to stage two of the trial is based upon the minimum number of

successes observed at the end of stage one. If the true probability of response

is p and the number of successes observed is k1 or less at the end of stage

one, then the trial will end early. The probability of terminating the trial at

stage one is Pr(X ≤ k1) =
∑k1

x=0

(
n1

x

)
px(1 − p)n1−x and the expected total

sample is, E(n) = n1 + n2 Pr(X ≤ k1).

In both Simon’s optimal and minimax designs, the hypothesis is a one-

sided hypothesis. In his designs, the sample sizes are determined under the

constraints of α and β error rates by minimizing the expected sample size,

E(n), assuming that the true response rate is p0. In the optimal design, the

number of patients needed for stage one (n1) is kept to a minimum to ensure

that not many patients are subjected to an inferior drug. On the other hand

the minimax design is to choose the smallest maximum total sample size

n(= n1 + n2) that satisfies the design error probability constraints.



Chapter 3. Literature review 33

3.2 Bayesian methods

In practice, although the response rate of the standard treatment or the

historical control should be fixed, most often, investigators are uncertain of

an exact value. Therefore, usually a range of values of p0 is given. Due to

the uncertainty in the value of p0, Thall and Simon [1994] argued that it is

then realistic to explicitly consider p0 as random during the planning of the

clinical trial and in the interpretation of the result at the end of the trial.

In addition, the decision to be made from a phase II trial is to either

recommend the drug for further study or not. As such, it seems to be intuitive

to adopt Bayesian method in determining the sample size where the emphasis

is not to reach for a correct conclusion under the constraint of low error rates

but to reach a best course of action (see Brunier and Whitehead [1994] and

Stallard [1998]).

There are generally two Bayesian methods in determining sample size in

a phase II trial. One such method is analogous to the frequentist approach

where cut-offs are specified at the stage of design and the analysis is based

on the Bayesian method before undertaking any decision, that is, to proceed

to a definitive phase III trial or to abandon the development of the new drug.

Thall and Simon [1994] presented a design and analysis of phase II clinical

trials that is based on this method. The formulation of the model requires

prior information of the response rate of the standard and new treatment,

and a minimum (nmin) and maximum (nmax) total number of patients to be

recruited.

In their design, patients are recruited sequentially and the total number
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of successes up to the i-th patient (i = 1, 2, . . . , nmax) is added up. Let X be

the random variable of the number of successes, and ΘS and ΘE be the pa-

rameters of the response rates of standard and new treatments, respectively.

If the observed cumulative number of successes Xi is greater than or equal

to the upper bound Ui then the trial will terminate and the new treatment

is declared promising. If Xi is less than or equal to the lower bound Li then

the trial will terminate and the new treatment is declared nonpromising. If

Li < Xi < Ui then the phase II trial will continue by recruiting another

patient. If however, at i = nmax and Li < Xi < Ui then the trial is concluded

as inconclusive.

The upper and lower bounds are integers and are obtained from the pos-

terior probability Pr(ΘE > ΘS + δ0|Xi),

Ui = the smallest integer such that Pr(ΘE > ΘS + δ0|Xi) ≥ pU

Li = the largest integer such that Pr(ΘE > ΘS + δ0|Xi) ≤ pL,

where pU and pL are predetermined probabilities. The pU should be prefer-

ably large, that is, between 0.95 and 0.99 and the pL should be preferably

small, 0.01 − 0.05. The probabilities pU and pL are analogous to the power

and type I error to the classical frequentist approach, respectively.

An extension of this method is one example from Tan and Machin [2002].

They proposed two Bayesian two-stage designs that resemble Simon’s two-

stage design but with similar Bayesian method as presented above. The first

of such designs is known as a single threshold design (STD) and the second

design is dual threshold design (DTD). In these models, instead of monitoring
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patients continuously, a group of patients is recruited to the first stage and

the decision whether to continue the trial to recruit more patients to the

stage two or to terminate the trial early and declare the new treatment is

not promising is based on the posterior probability of the true response rate.

In the STD, supposed that λ1 and λ2 (0 < λ1 < λ2 < 1) are the minimum

thresholds at the interim stage and at the end of trial, respectively, that the

true response rate is greater than the targeted response rate pA. The hypo-

thetical data from first and second stage of the design are used to determine

an optimal sample size from stage one, n1, and an optimal total sample size,

n. The algorithm is used to search for the optimal n1 and n under the con-

straints that the probability that the true response rate is greater than pA

based on the hypothetical data of stage one, and on the hypothetical data of

stage one and two is at least λ1 and λ2, respectively.

The decision at the interim stage is based on the actual data from n1

patients where the posterior probability that the true response rate is greater

than pA is obtained and if the probability is less than λ1 then the phase II trial

will cease and the drug is not recommended for further testing. Otherwise,

the trial will continue to recruit the remaining n−n1 patients into the stage

two and at the end of the trial, the posterior probability that the true response

rate is greater than pA is obtained from all n patients. If the posterior

probability is less than λ2 then there is no strong justification to recommend

the drug for definitive phase III trial. Otherwise, the drug is recommended

to proceed to phase III trial.

The DTD is slightly different than the STD on the basis that the optimal

sample size for stage one, n1 is now determined by the probability that the
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true response rate is less than the control arm response rate p0. The con-

straint is that the probability of the true response rate is less than p0 is at

least λ1. The rationale is that if the posterior probability is greater than λ1

then there is a high probability that the drug will be below the control arm

response rate p0, and as such, the drug will not be recommended for further

testing and the trial will be abandoned. If however, the posterior probability

is at least λ1 then the remaining n−n1 patients will be recruited to stage two

and the analysis and decision at the end of the trial are the same as those

in STD. Another difference between STD and DTD is that in DTD, λ1 need

not to be less than λ2.

Another Bayesian method used in the design of phase II clinical trials

is based on a decision theoretic approach where a loss or utility function in

treating the patients in the phase II trial and the action taken at the end of

trial is explicitly specified. The objective of this method is to optimise either

the loss or the utility function. Some of the earlier works are by Sylvester

[1988] and Brunier and Whitehead [1994].

In the design presented by Sylvester [1988] the loss function is composed

of the loss in treating patients in the phase II trial and the action at the

end of the trial. In conducting the phase II trial, the cost difference between

“a patient who does not respond to the new treatment and a patient who

does respond” is considered. At the end of the trial, there are two possible

actions: (1) accept the drug and (2) reject the drug. In the event of accepting

the drug, that is, the drug is recommended for further testing, the number of

patients to be treated with the new treatment in phase III trials is considered

in the loss function. The patient horizon which is “the average number of
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patients who are treated with an effective new drug after completion of the

phase II trial before a second new drug which is at least as good is found” is

also considered in the loss function.

Suppose that d(x) is the action taken based on the observed data, then

the loss function, L(p, d(x)), is the loss incurred upon taking action d(x)

when the true response rate is p. The form of the loss function is presented

in Sylvester’s paper. The risk function is the expectation of the loss function

L(p, d(x)) and the optimal sample size is determined by minimising the risk

function over a range of values of p.

In another design proposed by Brunier and Whitehead [1994], the model

is based on the formulation of the cost of conducting an ineffective treatment

(considered as a loss) and the expected gain if the treatment is found to be

effective, and also the loss of rejecting an effective treatment. The gain and

loss are fixed relative to each other. Similar to Sylvester’s model, Brunier

and Whitehead considered the number of patients who will be treated with

the new treatment in phase III (if it shows to be promising in phase II) and

if the new treatment is given to all future patients till a successor is found.

One key assumption to the model is that the design of the phase III clinical

trial is based on the conventional frequentist approach.

The response rate of the standard treatment in the phase II trial is as-

sumed to be known whereas the probability of success of the new treatment

is assumed to be unknown. Thus, a prior distribution is assumed for the

new treatment. The optimal phase II design is obtained by maximising the

expected utility function which is evaluated from the expected number of

patients to be treated in phase II and the expected number of patients to be
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benefited from the new treatment.

3.3 A series of phase II trials

Thus far, all the designs described consider each phase II trial individually.

In their review of statistical design and analysis of phase II trials, Mariani

and Marubini [1996] described that there are two practical scenarios influ-

encing the statistical frameworks. The first scenario is when patients are

plentiful with a certain disease and new treatments are limited. In another

scenario, the development of new therapies increases relatively faster than

the recruitment of eligible patients. In the latter scenario it becomes more

difficult to try all new therapies even with small sample sizes and therefore,

there is a need to identify the promising ones effectively to be put into larger

trials (see Whitehead [1985] and Yao et al. [1996]).

Some authors have proposed to consider a series of phase II trials as a

“single trial” and the objective is to identify a promising trial in the quickest

time. This is achieved by considering the relationship between the time of

conducting the study and the number of patients for each trial: when the

number of patients for each trial is optimised, the time to identify a promising

treatment is also optimised. When finally a trial is declared promising, the

“single trial” has achieved its goal and another “single trial” of a series of

clinical trial can commence.

In Fred Hutchinson Cancer Research Center in Seattle the success of bone

marrow transplantation as a treatment for the cancer of the blood has led

to an increase in the number of trials searching for an ideal combination of
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preparative and follow-up procedures. The number of patients suitable for

bone marrow transplantation is very small. This led to a model proposed

by Whitehead [1985] (see also a qualitative discussion by Whitehead [1986])

which is suitable for rare diseases where the number of patients available is

limited compared to the number of novel therapies waiting for trial.

One of the main assumption for Whitehead’s approach is that the total

number of patients available for study is considered known and fixed. Let

the total number of patients be N . This number is usually a projection of

the patient population eligible for trials for the next few months or years.

Supposed that n patients are assigned to each of the distinct trial then there

are a total of M = N/n trials. Although not all the new treatments will be

available for testing simultaneously, the total number of treatments can be

projected based on the current development plan.

His model is to find the optimum number of trials to be studied and

preferably all trials to run concurrently. The patients eligible for the study

should be randomised to each treatment. If only one trial can be accepted for

proof-of-concept phase III trial, then a selection method is used to estimate

the best treatment after the analyses from each trial are available.

Let pi be the probability of success for the i-th trial, i = 1, 2, . . . ,M ,

and assume they are independent random variables with a prior density of

g(p). Let p[1] denote the pi from the most promising treatment based on

the phase II data, that is the treatment selected for further testing in larger

phase III trial. The optimal number of trials to be tested, M∗, is obtained

by maximising the expected probability of success, E(p[1]), subject to the

constraint of N = nM where n and M have to be integers.
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Another example of the design for a series of trials is motivated by vacci-

nation studies in Memorial Sloan-Kettering Cancer Center (MSKCC) where

there are many vaccines waiting to be put on trial. Yao et al. [1996] proposed

a model to optimise the number of patients needed to find an effective treat-

ment. Although the motivation behind Yao, Begg and Livingston’s (hereafter

known as YBL) model was based on vaccination, the term treatment will be

used to be consistent with terms used throughout this report.

The most noticeable difference between YBL’s proposed model from White-

head’s is that the total number of patients is not fixed. However, there is a

more important difference between YBL’s and Whitehead’s. In YBL’s model,

the optimal sample size is determined under the constraints of some proba-

bility errors whereas in Whitehead’s, as discussed above, the determination

of optimal sample size is through the search of a maximum expected success

probability in the selected treatment. Further details of the design of YBL’s

model is discussed below.

The main objective of YBL’s model is to minimise the total number of

patients, N . Each new treatments will be tested one-by-one till one is de-

clared promising. Suppose that the M -th trial is the first trial to be declared

promising then M is a random variable that follows a geometric distribution

with Pr(M = m) as the probability of success.

According to YBL’s model, let Xi be the number of successful responses

in trial i for i = 1, 2, . . ., and let pi be the probability of a positive response

for this vaccine. The parameters pi are considered to be independent and

identically distributed random variables following an underlying distribution

g(p). The aim of the vaccine screening is to find an effective vaccine with
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a probability of response pi ≥ pA where pA is the “target” response rate.

Thus, in each trial, the hypothesis testing is written formally as H0 : pi < pA

against H1 : pi ≥ pA.

Suppose now that each trial evaluates n patients and it is declared as

promising if the number of observed positive responses is greater than a crit-

ical value, k. Assuming that all the n patients are independent and if the first

successful trial is called at the M -th trial then, Xi|pi ∼ binomial(pi, n) i =

1, 2, . . . ,M .

There are four possible outcomes from each trial: (1) do not reject H0

and H0 is true, (2) reject H0 and H0 is true, (3) do not reject H0 and H1 is

true, and (4) reject H0 and H1 is true. The probabilities of each outcome is
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denoted respectively by,

p−− = Pr(C = 0, pi < pA) =

∫
[0,pA)

Pr(Xi ≤ k|p) dg(p)

=

∫
[0,pA)

k∑
x=0

(
n

x

)
px(1− p)n−x dg(p),

p+− = Pr(C = 1, pi < pA) =

∫
[0,pA)

Pr(Xi > k|p) dg(p)

=

∫
[0,pA)

n∑
x=k+1

(
n

x

)
px(1− p)n−x dg(p),

p−+ = Pr(C = 0, pi ≥ pA) =

∫
[pA,1]

Pr(Xi ≤ k|p) dg(p)

=

∫
[pA,1]

k∑
x=0

(
n

x

)
px(1− p)n−x dg(p),

p++ = Pr(C = 1, pi ≥ pA) =

∫
[pA,1]

Pr(Xi > k|p) dg(p)

=

∫
[pA,1]

n∑
x=k+1

(
n

x

)
px(1− p)n−x dg(p), (3.3)

where C = 0 denotes that the vaccine is declared to be nonpromising and

C = 1 denotes that the vaccine is declared to be promising. Note that the

error probabilities (3.3) are functions of n and k, and also depend on the

distribution of p, g(p). From these notations, the probability of a vaccine

being declared promising can be written as Pr(M = m) = Pr(Xi > k) =

p+− + p++ = p+·.

There are two possible errors that could be made in the conclusion in

a series of vaccine screening: (1) accepting a nonpromising treatment and

(2) rejecting one or more promising vaccines. The authors showed that the
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probabilities of these errors are, respectively,

α1 =
∞∑
m=1

Pr(X1 ≤ k,X2 ≤ k, . . . , Xm−1 ≤ k,Xm > k, pm < pA)

=
p+−

p+·
, (3.4)

and

α2 =
∞∑
m=1

Pr(X1 ≤ k,X2 ≤ k, . . . , Xm−1 ≤ k,Xm > k, ḡm)

=
p−+

p+· + p−+

, (3.5)

where

gm = {p1 < pA, p2 < pA, . . . , pm−1 < pA}

and ḡm is the complementary set to gm. The optimal sample size (n∗) and

cut-off (k∗) are obtained from a search algorithm by constraining the two

posterior error probabilities; α1 < e1 and α2 < e2 where e1 and e2 are

predefined maximum tolerable error rates.

Suppose that instead of controlling the false positive error rate for the

whole series, the error rate is examined in the individual level of each trial.

The posterior probability of a drug being nonpromising given that there are

more than k positive responses observed is equal to Pr(pi < pA|C = 1) =

Pr(pi < pA|Xi > k). By some simple manipulation this is,

Pr(pi < pA|Xi > k) =
Pr(pi < pA, Xi > k)

Pr(Xi > k)
=
p+−

p+·
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which is the same as the definition of α1. It shows that by controlling the

posterior error rate at each trial level, the error rate of false positive of the

whole series of trial is also controlled.

Although the false positive rate α1 is incidentally easily interpreted in

the levels of individual trial and whole series of trials, the false negative rate

α2 is not so straightforward. For example, in a study given by Leung and

Wang [2001] the “target” response rate is pA = 0.2. The error rates α1 and

α2 are set to the maximum of 0.1 and 0.3, respectively. The average number

of treatments to be tested is, E(M) = 6.2, that is, there is an average of 5.2

rejected treatments before an effective one is found. The interpretation of

α2 is that the probability that at least one out of the 5.2 expected rejected

treatments is promising is 0.3.

If however, the α1 is now set at a maximum 0.2 while α2 is maintained

at 0.3, then the average number of rejected treatments is now 4.7 (that is,

E(M) = 5.7). The probability that at least one of the rejected treatments

being promising is now based on a smaller average. The probability of re-

jecting any given promising treatments is now more serious than when it is

based on a larger average. Thus, this underlines that the interpretation of

α2 depends on the expected number of treatments.

Building on the work by YBL, Leung and Wang [2001] extended the

model by introducing a false negative of each individual trial. By definition,

the probability of rejecting a promising vaccine is,

α∗2 = Pr(pi ≥ pA|C = 0) =
p−+

p−+ + p−−
.
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By drawing on a relationship between frequentist error rates and Bayesian

posterior error rates given by Lee and Zelen [2000] where both null and

alternative hypotheses are simple hypotheses, the relationship between α2

and α∗2 is,

α∗2 =
α2π

1− (1− α2)(α1 + π)
, (3.6)

where π is the prior probability of being promising, that is, Pr(pi = pA) = π.

The interpretation of α∗2 is clearer than that of α2. Using the earlier

example, for a pair of (α1, α2) = (0.1, 0.3), and prior probability of π = 0.217,

then α∗2 = 0.084. If four vaccines were rejected before the fifth vaccine is

declared promising, then the probability of a false negative for each rejected

treatment is 8.4%. On the other hand, an α2 = 0.3 concludes that at least

one out of the four rejected treatment is promising is 0.3.

The use of α2 is appealing in the design of a series of clinical trials because

the “overall” error rate can be controlled. However, the “practicality” of α2

is limited in the interpretation of each rejected vaccine. Nevertheless, from

the relationship shown in (3.6) it is easy to compute for α∗2 once α2 has been

specified and vice versa. It is then the choice of the investigator to decide

whether to control for α2 or α∗2 in the design.

Most of the designs discussed thus far, be it under the frameworks of

classical frequentist or Bayesian methodology, estimated the optimal sample

size by controlling two error rates; type I and II errors under the frequentist

approach, and posterior probabilities equivalent to type I and II errors under

the Bayesian approach. The designs that are not constrained by the error

rates are those based on the decision theoretic approach (Sylvester [1988]
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and Brunier and Whitehead [1994]), and the model proposed by Whitehead

[1985] which is to maximise the expected probability of the most promising

treatment. In this report, the objective is to consider the practical scenario

where the development of new therapies increases relatively faster than the

recruitment of eligible patients. We set out to consider a design for a series

of phase II clinical trials by controlling only one error, namely, the type I

error and minimise the type II error which is equivalently in maximising the

power of the trial. This hybrid design is proposed in the next chapter.



Chapter 4

Design of a series of clinical

trials

In reality, a pharmaceutical company will have a number of drugs in develop-

ment and waiting to be put on trial. Resources such as patients and money

are essentially finite and limited. Therefore, a decision made on each clinical

trial will subsequently affect the planning and development of other trials.

It is then necessary to consider each clinical trial as part of a whole series of

trials.

The objective of this project is to optimise the number of patients needed

for each individual trial by maximising the power of each trial which is con-

sidered as part of a series of trials while maintaining a maximally accepted

type I error at level α. Some of the methodology of this project extends works

developed by other authors. The methodology employed in this project is

a hybrid of frequentist and Bayesian methods where the traditional analysis

at the end of the trial is based on the conventional frequentist hypothesis

47
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testing and the Bayesian method is used to maximise the power of a trial.

Although in practice, the number of patients per trial, n, is an integer,

we will in this thesis as an idealisation assume n to be continuous. The

advantage of considering n as a continuous variable is that it permits the

maximisation of the power by differentiation.

4.1 Assurance

Similar to Whitehead’s approach [Whitehead, 1985] assume that the total

number of patients (N) is known and fixed. This number as described by

Whitehead is usually a projection of the patient population eligible for the

trial. In a series of sequential trials with n observations in each trial suppose

that Xi is the sample mean of n observations from trial i (i = 1, 2, . . . ,M)

and assume that it is normally distributed with mean θi and known variance

σ2/n. That is, Xi ∼ N(θi, σ
2/n). Consider now a simple two-sided hypothesis

test

H0 : θi = θ0 vs. H1 : θi 6= θ0.

From the Neyman-Pearson lemma, a critical value k is chosen so that

the test statistic rejects the null hypothesis at the desired level of α. That

is, Pr(|Xi| > k) = α/2 if H0 is true. Recall that the normal distribution is

symmetric about its mean and the area of one end of the tail is the same as

the area on the other end of the tail. Thus, to find the probability that |Xi|

is greater than k, it is sufficient to calculate Pr(Xi > k) and multiply by 2.
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This gives

Pr(Xi > k) = α/2

⇔ Pr

(
Xi−θ0√
σ2/n

> k−θ0√
σ2/n

)
= α/2

⇔ 1− Φ

(
k−θ0√
σ2/n

)
= α/2

⇔ k−θ0√
σ2/n

= z1−α/2

⇔ k = z1−α/2
√
σ2/n+ θ0

(4.1)

where Φ(·) is the cumulative function of a standard normal distribution and

z(x) is the upper 100(1− x)% point of the standard normal distribution.

We next consider the power of the trial to reject H0 under H1 : θi = θA

with θA assumed to be greater than θ0. The power of a single trial is equal

to

1− β = Pr(Xi > k|θi = θA)

= Pr

(
Z > z1−α/2 −

(
θA − θ0√
σ2/n

))
= 1− Φ

(
z1−α/2 −

(
θA − θ0√
σ2/n

))
. (4.2)

The assumption that led to formula (4.2) is that θi is fixed. Suppose now

that θi is random and follows a normal distribution with known mean µ and

variance τ 2. The probability density function for θi is

g(θi) =
1√

2πτ 2
e−(θi−µ)2/(2τ2).

The “average” power over all the possible values of θi according to the prior
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belief which is called the assurance [O’Hagan and Stevens, 2001], is given by,

A =

∫ ∞
−∞

[
1− Φ

(
z1−α/2 −

√
n

σ2
(θi − θ0)

)]
1

τ
ϕ

(
θi − µ
τ

)
dθi

= 1−
∫ ∞
−∞

Φ

(
z1−α/2 −

√
n

σ2
(θi − θ0)

)
1

τ
ϕ

(
θi − µ
τ

)
dθi

= 1−
∫ ∞
θi=−∞

∫ z1−α/2

xi=−∞

1

2πτ
exp

[
− 1

2

((
x−

√
n

σ2
(θi − θ0)

)2

+(
θi − µ
τ

)2)]
dxi dθi.

For ease of notation, denote σ2µ+
√
nστ2xi+nτ

2θ0
σ2+nτ2 by λ and σ2τ2

σ2+nτ2 by φ2, then

the above expression is simplified to,

A = 1−
∫ ∞
θi=−∞

∫ z1−α/2

xi=−∞

1

2πτ
exp

[
− 1

2

((
θi − λ
φ

)2

+

(σxi −
√
n(µ− θ0))

2

σ2 + nτ 2

)]
dxi dθi

= 1−
∫ z1−α/2

xi=−∞

1√
2πτ 2

exp

[
−

(xi −
√
n/σ2(µ− θ0))

2

2(1 + nτ 2/σ2)

]
·∫ ∞

θi=−∞

1√
2π

exp

[
− (θi − λ)2

2φ2

]
dθi dxi

= 1−
∫ z1−α/2

−∞

1√
2π(1 + nτ 2/σ2)

exp

[
−

(xi −
√
n/σ2(µ− θ0))

2

2(1 + nτ 2/σ2)

]
dxi

= 1− Φ

(
z1−α/2 −

√
n/σ2(µ− θ0)√

1 + nτ 2/σ2

)
.

Note that the assurance can also be obtained directly from the marginal

distribution ofXi. From its likelihood function, f(xi|θi) = 1√
2πσ2/n

e−(xi−θi)2/(2σ2/n),
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the joint distribution of Xi and θi is

h(xi, θi) = f(xi|θi)g(θi)

=
1√

2πσ2/n
exp

{
− (xi − θi)2

2σ2/n

}
· 1√

2πτ 2
exp

{
− (θi − µ)2

2τ 2

}
=

1

2πτσ/
√
n

exp

{
− 1

2

[(
xi − θi
σ/
√
n

)2

+

(
θi − µ
τ

)2]}
. (4.3)

The marginal distribution of Xi is obtained by integrating h(xi, θi) over

θi,

fXi(xi) =

∫ ∞
−∞

f(xi|θi)g(θi) dθi

=

∫ ∞
−∞

1

2πτσ/
√
n

exp

{
− 1

2

[(
xi − θi
σ/
√
n

)2

+

(
θi − µ
τ

)2]}
dθi

=

√
n

στ
√

2π
exp

{
− 1

2

[
n

nτ 2 + σ2
(xi − µ)2

]}
·∫ ∞

−∞
− 1√

2π
exp

{
− 1

2

(
θi −

nτ 2xi + σ2µ

nτ 2 + σ2

)2(
nτ 2 + σ2

σ2τ 2

)}
dθi

=

√
n

στ
√

2π
exp

{
− 1

2

[
n

nτ 2 + σ2
(xi − µ)2

]}
·
(

στ√
nτ 2 + σ2

)
=

1√
2π(τ 2 + σ2/n)

exp

{
− (xi − µ)2

2(τ 2 + σ2/n)

}
.

The marginal distribution of the random variable, Xi, has the form of a

normal distribution with mean µ and variance (τ 2 + σ2/n). Subsequently,
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based on (4.1) and (4.2), the assurance is,

A = Pr(Xi > k|θi ∼ N(µ, τ 2))

= Pr(Xi > z1−α/2
√
σ2/n+ θ0|θi ∼ N(µ, τ 2))

= 1− Φ

(
z1−α/2

√
σ2/n+ θ0 − µ√
τ 2 + σ2/n

)
= 1− Φ

(
z1−α/2 −

√
n/σ2(µ− θ0)√

1 + nτ 2/σ2

)
,

as obtained above. Examining the mathematical property of the assurance,

as n → 0, A = 1 − Φ(z1−α/2) = α/2, the specified one-sided type I error

rate. This suggests that there is a minimum power, albeit very small, that

can be attained when the sample size goes to 0, which means that we may

still benefit from a successful trial without even starting a trial! Whereas, as

n→∞, A ≈ 1−Φ(
z1−α/2−

√
n/σ2(µ−θ0)√

nτ2/σ2
)→ Φ(µ−θ0

τ
), the prior probability that

θi > θ0. Therefore, if the prior belief is positive, the assurance will be high

and if the prior is negative, the assurance will be low.

4.1.1 Model 1: Maximisation of assurance

The assurance can be interpreted as the average probability of rejecting the

null hypothesis over all possible values of the parameter of interest that is

based on the prior distribution. As mentioned earlier, in a series of clinical

trials where the total number of patients has been fixed as N and assuming

that each individual trial requires n number of patients, the total number of

trials to be tried in the series is simply M = N/n. Let M̃ be the number of

trials that reject H0. The first design we are proposing is to find the optimal
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number of patients per trial, n∗, that maximises the expected number of

trials that reject H0, E(M̃). Recall that the normal density is symmetric

about its mean and for the following designs, we will continue to work on

only one of the normal density tails and thus, the first assumption is that

µ− θ0 > 0. The expected number of trials that reject H0,

E(M̃) = MA

=
N

n

(
1− Φ

(
z1−α/2 −

√
n/σ2(µ− θ0)√

1 + nτ 2/σ2

))
. (4.4)

As nM = N is fixed, E(M̃) can be considered as a function of n or M . As

shown earlier, as n→∞ (note though n can only be as great as N because

the total number of patients is fixed but suppose that in an ideal situation

where N →∞, then n→∞), N/n→ 0 and the assurance, as shown earlier,

is bounded by the prior probability that θi > θ0. Therefore, E(M̃)→ 0. On

the contrary, as n → 0, the assurance will go towards the fixed error rate,

α/2, that is, the second term of the E(M̃) is bounded, whereas, the first

term, N/n → ∞. Therefore, E(M̃) → ∞. As there is no other value that

is greater than +∞, the global maximum is at n = 0. Thus, the optimal

sample size, n∗ = 0.

As an example of the property of E(M̃), consider for an i-th trial where

the planned analysis is set to test the null hypothesis of H0 : θi = 0 against

the alternative, H1 : θi 6= 0, and we fixed the maximally accepted type I

error at, α = 0.05. Supposed that the sample mean Xi follows a normal

distribution with mean θi and variance 1/n (that is, σ = 1) and the random

parameter θi has a prior distribution that follows a normal distribution with
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Figure 4.1: The expected number of trials that reject null hypothesis against
the sample size for each individual trial. The hypothesis is H0 : θi = 0 vs
H1 : θi 6= 0. Based on Xi ∼ N(θi, 1/n), θi ∼ N(0, 1), N = 1000, and α = 0.05.

mean 0 and variance 1. Assuming that the projection of the total sample

size is, N = 1000, Figure 4.1 shows the various values of E(M̃) with different

values of n.

Corresponding to the mathematical interpretation, the plot shows that

to maximize the number of trials to be recommended for definitive phase III

trials when they are showing efficacy, we should have many small individual

trials. In fact, if n is fixed to have only integer value, each individual trial
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should have only one patient. By having only one patient per trial, naturally

more drugs can be put on trial and consequently, increases the expected total

number of trials that reject H0 since there is positive probability of rejection

of H0 even with a very sample size.

It appears that E(M̃) is a decreasing function of n. Due to the monotonic

function, if there is a constraint on the minimum number of patients required

for each trial, then that minimum n will give the highest expected number

of trials that reject null hypothesis.

4.1.2 Model 2: Minimisation of the expected net loss

So far, we have ignored the start-up cost per trial and hence based on the

preceding result, we “get something for nothing” and it could be this that

leads to the very small optimal sample size. In practice, there is a start-

up cost associated with each clinical trial. By having as many trials as

the total number of patients available, the total start-up cost will be greatly

inflated. The start-up cost could be the money or the time spent on planning,

designing, submitting for ethics approval, and so on.

Suppose that one unit of value is assigned to each successful trial, then

the total expected gain is E(M̃). Let the start-up cost be fixed at f which is

relative to the one unit of gain. The total start-up cost for all trials is thus,

fM . The expected net loss is,

E(F ) = fM − E(M̃). (4.5)

Note that the total cost does not include the cost for each patient. This is
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because the total number of patients is known and fixed. Therefore, the total

patients cost is a constant and will not affect the optimisation of the model.

The optimisation problem is to find an n that minimises the expected net

loss, E(F ). To do so, the expression,

E(F ) = f

(
N

n

)
− N

n

(
1− Φ

(
z1−α/2 −

√
n/σ2(µ− θ0)√

1 + nτ 2/σ2

))
=
N

n

(
f + Φ

(
z1−α/2 −

√
n/σ2(µ− θ0)√

1 + nτ 2/σ2

)
− 1

)

can be differentiated with respect to n, and subsequently from the equation

dE(F )/ dn = 0 we solve for n. However, due to the Φ(·) term in the differ-

entiated expression, this can only be solved numerically. The search for the

optimal n∗ that minimises the expected net loss, E(F ), can alternatively be

made by a direct computation of E(F ) for a range of values for n (from 0.01

to N by an increment of 0.01). The n that corresponds to the smallest value

of E(F ) is then considered as the optimal n∗.

For an example on the characteristics of the design, again consider that in

each trial the null hypothesis of H0 : θi = 0 is tested against the alternative,

H1 : θi 6= 0, and α is set at 0.05. We have Xi ∼ N(θi, σ
2), and the prior

distribution is θi ∼ N(µ, τ 2). Suppose that the total sample size is N = 1000,

and the start-up cost is fixed at f = 0.05. Figure 4.2 shows that both fM

and E(M̃) are monotonic functions of n.

Figure 4.3(a) shows that the curve of the net loss, E(F ), gets “narrower”

as τ increases while σ is held constant (σ = 1). When τ gets larger, the

variance of the prior belief is wider. Thus, smaller sample sizes are required
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to give information regarding the θi from each trial. In contrast to what has

been observed from the increment of τ , Figure 4.3(b) shows that E(F ) is

“stretched” as σ increases while τ is held constant (τ = 5). This property

conforms to the idea that as the standard deviation of the likelihood function

is wider, larger sample size is required to deliver more information on the

parameter of interest, θi.

Table 4.1 presents some of the optimal sample sizes (n∗) under different

likelihood functions and prior distributions such that the effect sizes (µ/σ)

are 0.2 (“small” effect size), 0.5 (“moderate” effect size) and 0.8 (“large”

effect size). Suppose that the prior mean, µ = 1, and the standard deviation

of the likelihood function, σ = 2, (giving a moderate prior effect size of 0.5)

and the standard deviation of the prior mean is τ = 1, an optimal sample size

n∗ = 2.37 gives the smallest expected net loss, E(F ) = −51.813. From a total

of 1000 patients and if 2.37 patients were recruited in each trial, the expected

number of trials that will reject H0 is E(M̃) = 72.91 out of 421.941 trials

that will be conducted. Note that when the parameters (µ = 1, τ = 1, σ = 2)

is multiplied by 2 for example, (µ = 2, τ = 2, σ = 4), the n∗ is the same,

that is, n∗ = 2.37. The optimal sample size n∗ is robust towards the unit

of measurement. For example, if the original measurement is in centimetres

and it has now changed to inches, the n∗ will remain the same regardless.

There are some situations where an optimal n∗ cannot be found. As the

fixed start-up cost, f → 0, the optimal sample size, n∗ → 0. As shown from

Figure 4.4, when f is very small the total cost for starting trials, fM , is also

negligible (refer to (4.5)). Thus, the model is the same as Model 1 that has

been proposed earlier, which in order to maximise the power of a series of
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trial is to conduct as many trials as possible with only one patient.

Table 4.2 shows the optimal sample sizes when f takes on various values

between 0 and 1 while holding other parameters fixed. When f = 0.01,

n∗ = 0.01 which is the minimum value used in the direct search algorithm.

By modifying the minimum value in the direct search algorithm n∗ changes

and takes on that minimum value (result not shown).

On the other hand, as f → 1, the optimal sample size n∗ → ∞. Prac-

tically, n∗ will take on the value of N as the total number of patients has

been fixed before the trials begun. Referring back to the equation (4.5), as

f → 1, the total cost, fM , will always be greater than the expected gain

and it is thus very expensive to start any trial. Henceforth, it is advisable to

have only one trial with all the patients in it. In the example shown in Table

4.2, n∗ takes on 1000 when the start-up cost is 0.99. In other scenarios when

f = 0.99 and N varies with smaller and larger values than 1000, n∗ is always

equal to N (result not shown).

4.1.3 Model 3: Minimisation of the total cost

So far, our designs have a constraint of a fixed total sample size N . Suppose

now that there are unlimited number of patients for a series of trial and

consequently, the total number of trials including the first successful trial is

also not fixed. This approach will be the same as that proposed by Yao et al.

[1996]. In the formulation of Model 3, consider a series of phase II trials as

one single trial. The objective of the series is to find the first trial that is

successful and recommended for further testing in definitive phase III trial.
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When the first successful trial is obtained, the series ends and another series

of trials will start.

The total number of trials including the first successful trial is now a ran-

dom variable which follows a geometric distribution. The prior probability

that a trial that is declared successful is equal to A, the assurance as intro-

duced earlier. The expected number of trials required to give one successful

trial, including the first successful trial is 1/A. Following on the notation in

Model 2, let f be the start-up cost per trial, then the average total start-up

cost for all trials up to and including the first successful trial is f/A.

There are n patients in each trial so that the expected total number of

patients till a successful trial is found is E(n) = n/A. As the total number

of patients to be required is not fixed, the total cost needed to be spent

on patients is not fixed either. Let c be the cost per patient which is also

relative to the one unit of gain, then the expected total cost of patients will

be cE(n) = cn/A.

Therefore, the expected total cost that would be spent till a successful

trial is declared is simply

C̄ = f/A+ cE(n)

=
1

A
(f + cn). (4.6)

The optimisation problem is to find an n that minimises the expected

total cost, C̄. Similar to Model 2, the expression in (4.6) can be differentiated

with respect to n. However, due to the Φ(·) term in the assurance, this can

only be solved numerically. Figure 4.5 shows the three expected total costs
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of conducting a series of trials: the expected cost of patients (cE(n)), the

expected start-up cost (f/A), and the expected total cost (C̄) against the

sample size per trial (n). Clearly, from both equation (4.6) and Figure 4.5,

the expected cost of patient increases linearly with respect to n whereas the

expected start-up cost decreases exponentially with respect to n.

Table 4.3 shows some optimum sample sizes for each trial that minimise

the expected total costs for the effect sizes (µ/σ) of 0.2, 0.5, and 0.8. The

search algorithm used to produce the table begins with a very small value for

n (0.01 in this example) and increases to 200 by 0.01. The maximum value

of 200 was chosen because most phase II trials have less than 100 patients.

An n is considered optimum if it corresponds to the smallest value of C̄.

Suppose that the null hypothesis H0 : θi = 0 of each trial in a series is

tested against an alternative H1 : θi 6= 0. Let the start-up cost per trial be

f = 0.02, the cost per patient be c = 0.001. If the likelihood function f(xi|θi)

has a normal distribution with mean θi and standard deviation σ = 5, and

the prior distribution is normally distributed with mean µ = 1 and standard

deviation τ = 2, and setting the α = 0.05, the optimal sample size per trial

is n∗ = 19.22 (Table 4.3). The expected total number of patients needed till

the first successful trial is found is E(n) = 64.979.
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Figure 4.2: The expected net loss from conducting a series of trials, E(F ),
(solid), the total cost of trials, fM , (dotted) and the expected gain, E(M̃),
(dashed) against the sample size for each individual trial, n. The hypothesis
is, H0 : θi = 0 vs. H1 : θi 6= 0. Based on Xi ∼ N(θi, 4) and θi ∼ N(1.5, 9),
and α = 0.05.
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(a) µ = 1 and σ = 1
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(b) µ = 1 and τ = 5

Figure 4.3: The expected net loss, E(F ), from conducting a series of trials
against the sample size for each individual trial, n, for (a) τ of 1.25 (solid),
2.0 (dashed), and 5.0 (dotted) and (b) σ of 1.0 (solid), 2.0 (dashed), and 5.0
(dotted).
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Figure 4.4: The expected net loss from conducting a series of trials against
the sample size for each individual trial for f of 0.01 (black solid line), and
0.99 (black dashed line). The other grey dotted lines in between are various
f values at 0.1, 0.5, and 0.9 as the curve changes from “narrow” to “spread
out”.
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Figure 4.5: The expected total cost of a series of trials C̄ (solid), the expected
start-up cost f/A (dashed), and the expected cost of patients cE(n) (dotted)
against the sample size for each individual trial n. The hypothesis is, H0 :
θi = 0 vs. H1 : θi 6= 0. Based on Xi ∼ N(θi, 4) and θi ∼ N(1, 4), and
α = 0.05.
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Table 4.1: Optimal sample sizes per trial, n∗, expected gain, E(M̃), and
expected net loss, E(F ), under various likelihood functions and prior distri-
butions. The total number of patients is fixed at N = 1000 and the start-up
cost is f = 0.05. The hypothesis is, H0 : θi = 0 vs. H1 : θi 6= 0. Based on
Xi ∼ N(θi, σ

2), θi ∼ N(µ, τ 2), and α = 0.05.

Effect size σ µ τ n∗ E(M̃) E(F )

0.2 5 1 1 14.83 11.662 -8.29
5 1 2 6.38 23.991 -16.154
5 1 5 1.51 92.469 -59.356
7.5 1.5 1 21.53 8.829 -6.507
7.5 1.5 2 10.78 15.158 -10.52
7.5 1.5 5 2.96 48.697 -31.805

10 2 1 26.66 7.689 -5.813
10 2 2 14.83 11.662 -8.29
10 2 5 4.62 32.173 -21.35

0.5 2 1 1 2.37 72.91 -51.813
2 1 2 1.02 149.983 -100.963
2 1 5 0.24 579.307 -370.974
3 1.5 1 3.44 55.201 -40.666
3 1.5 2 1.73 94.649 -65.748
3 1.5 5 0.47 305.162 -198.779
4 2 1 4.27 48.043 -36.334
4 2 2 2.37 72.91 -51.813
4 2 5 0.74 201.006 -133.438

0.8 1.25 1 1 0.93 186.405 -132.642
1.25 1 2 0.4 383.465 -258.465
1.25 1 5 0.09 1504.754 -949.198
1.875 1.5 1 1.35 141.141 -104.104
1.875 1.5 2 0.67 242.94 -168.313
1.875 1.5 5 0.19 771.955 -508.797
2.5 2 1 1.67 122.954 -93.014
2.5 2 2 0.93 186.405 -132.642
2.5 2 5 0.29 514.014 -341.601
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Table 4.2: Optimal sample sizes per trial, n∗, expected gain, E(M̃), and
expected net loss, E(F ), under various start-up costs, f . The hypothesis is,
H0 : θi = 0 vs. H1 : θi 6= 0. Based on Xi ∼ N(θi, 4), θi ∼ N(1, 4), N = 1000,
and α = 0.05.

f n∗ E(M̃) E(F )

0.001 0.01† 2868.474 -2768.474
0.01 0.01† 2868.474 -1868.474
0.05 1.02 149.983 -100.963
0.1 2.04 116.397 -67.378
0.2 4.26 80.488 -33.54
0.5 34.69 16.301 -1.887
0.6 143.24 4.407 -0.218
0.9 1000 0.669 0.231
0.99 1000 0.669 0.321

† In the direct search algorithm a value of 0.01 was used as the minimum for
n to start off the search. Hence, the minimum value that n∗ can reach is 0.01.
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Table 4.3: Optimal sample sizes per trial, n∗, expected total number of
patients, E(n), and expected total cost, C̄, under various start-up costs, f ,
and costs per patient, c. The hypothesis is, H0 : θi = 0 vs. H1 : θi 6= 0.
Based on Xi ∼ N(θi, σ

2), θi ∼ N(µ, τ 2), and α = 0.05.

Effect size σ µ τ c f n∗ E(n) C̄

0.2 5 1 2 0.001 0.05 31.08 85.205 0.222
5 1 2 0.002 0.05 21.61 69.088 0.298
5 1 2 0.001 0.02 19.22 64.979 0.133
7.5 1.5 2 0.001 0.05 42.17 113.833 0.249
7.5 1.5 2 0.002 0.05 29.58 95.339 0.352
7.5 1.5 2 0.001 0.02 26.34 90.545 0.159

10 2 2 0.001 0.05 51.79 135.15 0.266
10 2 2 0.002 0.05 36.53 115.587 0.389
10 2 2 0.001 0.02 32.5 110.391 0.178

0.5 2 1 2 0.001 0.05 13.37 27.502 0.13
2 1 2 0.002 0.05 9.14 20.585 0.154
2 1 2 0.001 0.02 8.1 18.865 0.065
3 1.5 2 0.001 0.05 17.37 33.615 0.13
3 1.5 2 0.002 0.05 12.09 25.997 0.16
3 1.5 2 0.001 0.02 10.77 24.081 0.069
4 2 2 0.001 0.05 20.61 37.492 0.128
4 2 2 0.002 0.05 14.56 29.693 0.161
4 2 2 0.001 0.02 13.03 27.721 0.07

0.8 1.25 1 2 0.001 0.05 8.88 16.608 0.11
1.25 1 2 0.002 0.05 6 12.001 0.124
1.25 1 2 0.001 0.02 5.29 10.852 0.052
1.875 1.5 2 0.001 0.05 11.25 19.491 0.106
1.875 1.5 2 0.002 0.05 7.74 14.5 0.123
1.875 1.5 2 0.001 0.02 6.87 13.253 0.052
2.5 2 2 0.001 0.05 13.05 21.066 0.102
2.5 2 2 0.002 0.05 9.13 16.035 0.12
2.5 2 2 0.001 0.02 8.15 14.773 0.051
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Further work

The risk of drug research and development is increasing while the profit

is decreasing. In 1996, Senn [1996] stressed that it is important to choose a

portfolio of drugs in development as it may be an essential to the survival of a

pharmaceutical company. Resources are finite. Thus, not all projects can be

developed. In the clinical trials of drug development, the trials are arranged

sequentially and not all development costs are paid up-front. The failure of a

drug at any phase may give the opportunity to abandon the project and thus

there is no commitment to fund the drug development any further. Julious

and Swank [2005] also emphasized that when there are a number of drugs

waiting for development, a formal decision analysis is essential especially in

the “potential of fast failure”.

Motivated by these ideas, we therefore plan to build on the current work

by considering other aspects of clinical trials. The formulation will be based

on the scenario where the supply of new therapies is high and the targeted

patient population is limited. The following section will give some details on

68
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the extensions to be considered.

5.1 Extension

Some of the further works planned for the next two academic years are:

1. Tables 4.1 in Chapter 4 are based on a fairly large total number of

patients, N = 1000. However, in rare diseases or diseases with small

populations such as paediatric, geriatric and ethnic minority popula-

tions, it is unrealistic to expect so many patients eligible for trial for

any given year. Thus, we will inspect qualitatively how Model 2 will

behave when N is considerably smaller, that is, N < 500. Due to

the much smaller total sample size, the number of trials that can be

tested in a series will be less. A problem that we anticipate is, for ex-

ample, suppose that N = 250 and the optimal sample size per trial is

n∗ = 27. At the end of the 8-th trial, a total of 216 patients would have

been enrolled into the series of trials and there are only 34 patients left

available for recruitment. If however, there is not any trial that rejects

H0 up to the 8-th trial should the investigator continue to recruit 27

patients to one more trial and hope that this trial will reject the null

hypothesis or is there an alternative? We wish to examine further the

anticipated problems and various possibilities.

2. The Model 2 proposed in Chapter 4 assumed that there must be at least

one trials in a series of trial that would reject the null hypothesis. What

if none of the trials reaches the minimum cut-off for the investigator to
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declare that the new treatment is promising? A different type of design

is necessary to incorporate such scenario.

3. Some of the choices of actions in a phase II trial are to (i) proceed to

phase III trial with the new treatment, (ii) continue to another phase

II trial with the same treatment, (iii) go back to phase I trial with

the same treatment but perhaps with different dose or combinations or

route of administration, etc, and (iv) cease the development. These ac-

tions with their corresponding loss and gain, and probability of success

and failure could be included in the next design. Again a special case

of this extension is to consider a limited N .

4. The Models 1, 2, and 3 are based on the assumptions that each indi-

vidual trial has the same prior beliefs. However, different compounds

under study may have slightly different probability of effectiveness. For

example, some treatments are modifications of existing effective treat-

ments or some treatments that are well established in other diseases

but not in the population on the current trial or some treatments are

quite new so that the prior information is obtained from animal or lab-

oratory studies. It is of interest to investigate how the optimisation

problem will be affected under different priors.

5. Depending on the approval from the industrial collaborator, Roche, the

models described above will be fitted with real-life data for illustration

and qualitative comparison.
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5.2 Proposed headings for the thesis

The proposed headings for the thesis will be as followed:

Chapter 1: Background

Chapter 2: Design of a series of phase II clinical trials

Chapter 3: Design of a series of projects

Chapter 4: Application of proposed designs with real-life data

Chapter 5: Discussion
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Completed and planned

training

List of completed training

The list below is the trainings completed via Warwick Graduate School Skills

Programme in the year 2009.

Feb 21: Speed Reading

Feb 25: Writing a PhD Thesis - Science and Medicine

Mar 04: Thesis structure

Mar 11: Time Management and Self Motivation

Apr 14: 2 day Effective Researcher Training Course

Apr 24: Preparing for the Upgrade from Mphil to PhD

72
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May 08: Presenting to an Academic Audience

May 22: Voice Training

Planned training

One of the planned trainings is an attachment to the statistical division of

Roche for a few weeks.

The list below is some of the courses and trainings planned for the next

two years. The courses are organised by Academy for PhD Training in Statis-

tics (APTS), Royal Statistical Society (RSS) and the Postgraduate Statistics

Centre of Lancaster University.

• Statistical inference

• Statistical computing

• Bayesian adaptive designs

• Presenting statistical data

• Ethics and statistics

• Scientific writing

Besides courses and trainings, at least two conferences are planned for

the next two years:

• Research Students’ Conference in Probability and Statistics, 12th-15th

April 2010 in the University of Warwick.



Chapter 6. Completed and planned training 74

• International Society for Clinical Biostatistics Conference, August 2011

in Ottawa Canada.

Tables 6.1 and 6.2 show some of the trainings and programmes planned

for the next two academic years. The table will be updated when other

relevant courses, trainings and conferences are available.
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