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This supplementary material contains extensions of the null-hypothesis
of Section 2.3.1 of Zanella (2014) and of the Bayesian complementary
clustering model de�ned in Section 3 of Zanella (2014).

1. Null-hypothesis using Strauss point processes. In Section 2.3.1

of Zanella (2014) we de�ned the following null hypothesis for the distribution

of the marked point process x under consideration: each point pattern x(j) is

an inhomogeneous Poisson point process with intensity function λj(·). Here
x(j) denotes the type j subpattern of points. In order to make such a null

hypothesis more realistic we could introduce some repulsion among points

of the same type. In fact it is reasonable to expect settlements with the

same placename not to be too close to each other. This could be modeled by

assuming that each point pattern xj is distributed according to an inhomo-

geneous Strauss process, and x(j) is independent from x(i) for i di�erent from

j. A Strauss point process x(j) = {x(j)1 , . . . , x
(j)
n(xj)
} has probability density

f(x(j)) = αγs(x
(j))

n(x(j))∏
i=1

λj(x
(j)
i ) ,

with respect to the distribution of a unitary homogeneous Poisson point

process. Here α is a normalizing constant, γ is a inhibition parameter between

0 and 1, s(x(j)) is the number of (unordered) couples of points in x(j) closer
than some distance R > 0 apart, and λj(·) is the intensity function. See

Stoyan, Kendall and Mecke (1987) for more rigorous de�nitions of the Strauss

process and other Gibbs-type point processes.

We then perform the same approximate Monte Carlo test of Section 2.3.1

of Zanella (2014), replacing the inhomogeneous Poisson point process model

with the Strauss one (the estimated intensities λ̂j(·) are obtained through

Gaussian kernel smoothing as describe there). In order to perform such a test

we need to choose the values of the inhibition parameter γ and the maximal
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inhibition distance R determining the distribution of the Strauss process. We

considered γ equal to 0.1, 0.5 and 0.9 (corresponding to strong, medium and

mild interaction). Given the historical context we considered values of the

inhibition distance R equal to 5, 10 and 20 km. We tried all the 9 resulting

combinations of γ and R. The results did not change signi�cantly from the

ones obtained in Section 2.3.1 of Zanella (2014) using the inhomogeneous

Poisson point process model. Figure 1 shows the result obtained using γ = 0.1
and R = 20 (the strongest interaction among the ones we considered). Note

that the 95% envelopes with such a null hypothesis are very similar to the

ones obtained in Section 2.3.1 of Zanella (2014).
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Fig 1. Testing the null hypothesis of Section 1, based on Strauss point processes, with
the procedure described in Section 2.3.1 of Zanella (2014). Black solid lines represent the
centred L-function for the observed pattern. The 95% envelopes (gray areas) are obtained
using 99 simulated patterns and the red dashed lines indicate the upper deviations. Devia-
tion test: if the black solid line rises above the red dashed line then the interaction can be
considered signi�cant at signi�cance level α = 0.05.

2. Dropping the uniform marks assumption. In Section 3 of Zanella

(2014) we de�ned the Bayesian random partition model we used to analyze

the Anglo-Saxon settlements dataset. In particular, when de�ning the like-

lihood function (Section 3.2 of Zanella, 2014) we assume that, given the

number of points s in a cluster xC , the marks m1, . . . ,ms of such points are

sampled uniformly from the set

(2.1) Ms =
{
{m1, . . . ,ms} ⊆ {1, . . . , k} | ml1 6= ml2 for l1 6= l2

}
.

Since the cardinality ofMS is
(
k
s

)
, this leads to the term

(2.2)
1(
k
s

) ∏
l1 6=l2

1(ml1 6= ml2)
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in the likelihood function h(s,σ)(xC) given in (3.2) of Zanella (2014).

Nevertheless, as already mentioned in Remark 1 of Zanella (2014), the

assumption of the marks being sampled uniformly seems unrealistic because

of the heterogeneity in the number of settlements across di�erent placenames

(see Table 2 of Zanella, 2014). In this section we develop a model where the

marks within each cluster are sampled non uniformly.

Suppose we have a probability vector p(m) = (p
(m)
1 , . . . , p

(m)
k ) on the set

of possible marks {1, . . . , k}, with pi > 0 for any i and
∑k

i=1 p
(m)
i = 1. Then,

given the number of points s in a cluster xC , the marks m1, . . . ,ms are

independently sampled from {1, . . . , k} according to p(m), conditioning on

all the marks being di�erent among themselves. Therefore the probability of

a certain con�guration m1, . . . ,ms is

(2.3)
p
(m)
m1 · · · p

(m)
ms

Zs

∏
l1 6=l2

1(ml1 6= ml2) ,

where Zs is a normalizing constant de�ned as

(2.4) Zs = Zs(p
(m)) =

∑
{a1,...,as}∈Ms

p(m)
a1 · · · p

(m)
as .

Note that if the probability vector p(m) is uniform then (2.3) equals (2.2).

Replacing (2.2) with (2.3) in the likelihood function (3.2) of Zanella (2014)

we obtain the new likelihood function

(2.5) h(s,σ)(xC) =
p
(m)
m1 · · · p

(m)
ms g (xC)

∏
l1 6=l2 1(ml1 6= ml2)

Zs s (2σ2)s−1
exp

(
−
πδ2C
2σ2

)
,

where, as in Section 3.2 of Zanella (2014), xC is the Euclidean barycenter of

xC and δ2C =
∑

i∈C
(
xi − xC

)>(
xi − xC

)
.

Since p(m) is unknown, the standard bayesian approach would be to de�ne

a prior distribution on p(m) and to consider the joint posterior distribution of

p(m) and the other unknown quantities. In order to explore such a posterior

distribution, one should add to the MCMC algorithm of Section 4 of Zanella

(2014) a Metropolis-Hastings step updating p(m). This step would require

the evaluation of the normalizing constants Z1(p
(m)) up to Zk(p

(m)) de�ned
in (2.4) for the proposed value of p(m). Note that the evaluation of Zs(p

(m))
is costly because its de�nition involves a summation over all the elements of

Ms. Expressing Zs(p
(m)) as the permanent of an appropriate k × k matrix,

we could use Ryser's algorithm (Ryser, 1963), whose complexity is of order

O(2kk). This allows us to evaluate Z1(p
(m)) up to Zk(p

(m)) but the cost is
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too high to perform such evaluation at each MCMC step (the step updating

p(m) would dominate the others in terms of computational cost, making the

algorithm too expensive).

In order to circumvent this problem we replace p(m) with a plug-in estima-

tor, in an empirical Bayes fashion. In such a way, the posterior distribution

will not account for the uncertainty over p(m). Nevertheless this will allow

us to understand what is the impact of using a non-uniform p(m) over the

estimates of the quantities of interests (e.g. σ and p(c)) in a computationally

feasible way. A natural estimator for the probability of the i-th mark, p
(m)
i , is

the number of points with such a mark divided by the total number of points,
ni(x)
n(x) . We performed posterior inferences setting p

(m)
i = ni(x)

n(x) for i running

from 1 to k and replacing the likelihood (3.2) of Zanella (2014) with the

non-uniform version in (2.5). The results are in accordance with each other,

although there are some di�erences (see Figure 2). In particular the ones ob-

tained with the uniform marks assumptions are more conservative, meaning

that they produce less clustering. The results presented in Zanella (2014) use

the uniform marks assumption for simplicity and because it produces more

conservative results.
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Fig 2. Comparison of the posterior distributions of (a) p
(c)
1 and (b) σ, obtained with and

without the assumption of the marks being sampled uniformly (see Section 2 for details).

Finally we tested the sensitivity of the results to the choice of the plug-in

estimator p
(m)
i = ni(x)

n(x) . In particular we sampled perturbed values (ñ1, . . . , ñk)

according to a multinomial distribution Mult(n(x),p(m)), with p
(m)
i = ni(x)

n(x) ,
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and used the perturbed values p̃
(m)
i = ñi

n(x) as plug-in estimator. The results

with and without the perturbation were extremely similar.

3. Alternative model for the prior distribution of ρ. In Section

3.4.1 of Zanella (2014) we de�ne a model, namely the Poisson model, for the

prior distribution of the partition ρ. As mentioned in Remark 4 of Zanella

(2014), we also consider another model for π(ρ) based on the Dirichlet-

Multinomial distribution. We now de�ne such a model and we provide the

results of the analysis of the Anglo-Saxon settlements dataset obtained us-

ing the Dirichlet-Multinomial model. The results are almost equivalent to

the ones obtained with the Poisson model. In Zanella (2014) we preferred

to use the Poisson model because its posterior distribution factorizes over

the clusters and this simpli�es drastically the computations needed at each

MCMC step.

3.1. Dirichlet-Multinomial Model for π(ρ). For l running from 1 to k, we
de�neNl(ρ) as the number of clusters of ρ having size l and Yl(ρ) = l·Nl(ρ) so
that Yl(ρ) is the total number of points in all the clusters of size l. Note that∑k

l=1 Yl(ρ) = n(x), where n(x) is the number of points in the k-type point
pattern x. In this model the random vectorY(ρ) = (Y1(ρ), . . . , Yk(ρ)) follows
a Dirichlet-Multinomial distribution conditioned on Yl being a multiple of l
(for l running from 1 to k)
(3.1)

Pr(Y1 = y1, . . . , Yk = yk) ∝


n!

y1!···yk!p
y1
1 · · · p

yk
k if

∑k
l=1 yl = n and

yl is a multiple of l,
0 otherwise.

We assume that the parameter vector p = (p1, . . . , pk) is unknown with

prior distribution Dir(α1, . . . , αk). The resulting prior distribution of ρ given
p, recalling that we want such distribution to be exchangeable, is

(3.2) π(ρ | p) ∝ 1

η(ρ)

n(x)!

Y1(ρ)! · · ·Yk(ρ)!
p
Y1(ρ)
1 · · · pYk(ρ)k ,

where η(ρ) = #{ρ̃ | Y(ρ) = Y(ρ̃)} = n!
(∏k

l=1(l!)
Yl
l (Yl/l)!

)−1
.

Remark 1. This model can be seen as a Dirichlet-Multinomial mixture

of k classes having Y1, Y2, up to Yk points corresponding to singletons, cou-

ples, up to k-tuples. We are therefore converting the problem of �nding an

unknown number (between n
k and n) of small clusters into the problem of

�nding k big clusters, with k �xed and relatively small (20 in our case).
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Remark 2. Note that pl represents the probability of a point being in a

cluster of size l. Since we conditioned Yl on being a multiple of l, though,
this is just an approximation. Nevertheless for n(x) big (e.g. n(x) ≥ 10) the
approximation error is negligible.

3.2. Model parameters and Posterior Distribution. The Dirichlet-Multinomial

model results in the following unknown elements

(ρ, σ,p) ∈ Pn × R+ × [0, 1]k,

where Pn is the set of all partitions of {1, . . . , n}. Figure 3 provides graph-

ical representations of the underlying conditional independence structure.

Given the prior distribution described above and the likelihood distribution

Fig 3. Conditional independence of the random elements involved in the Dirichlet-
Multinomial model.

described in Section 3.2 of Zanella (2014) we obtain the following conditional

posterior distributions for the Dirichlet-Multinomial model

(3.3) π(ρ | x, σ,p) ∝
k∏
l=1

Nl!

(lNl)!
·

·
N(ρ)∏
j=1

g (xCj

)
(psj )

sj

csjσ
2(sj−1)

exp

(
−
πδ2Cj

2σ2

) ∏
i,l∈Cj , i 6=l

1(mi 6= ml)

 ,

p | x, ρ, σ ∼ Dir (α1 + Y1(ρ), . . . , αk + Yk(ρ)) .(3.4)

where cs =
(
k
sj

)
sj 2

sj−1. Analogously to the Poisson model, the full condi-

tional posterior distribution of σ, π(σ|x, ρ,p), depends only on σ, x and ρ
and is given by (3.4) of Zanella (2014).

3.3. Comparing the results obtained with the two models. We used the

MCMC algorithm described in Section 4 of Zanella (2014) to target the pos-

terior distribution arising from the Multinomial-Dirichlet model when ap-

plied to the Anglo-Saxon settlements dataset. Figure 4 compares the results
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obtained with the Dirichlet-Multinomial model to the ones obtained with

the Poisson model, displayed in Section 5 of Zanella (2014). The posterior

distributions obtained with the two models are very similar.
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Fig 4. Comparison of the the Dirichlet-Multinomial model (see Section 3.1) and the Pois-
son one (see Section 3.4.1 of Zanella, 2014). (a) Posterior distribution of σ and (b) pos-
terior distribution of Y = (Y1, . . . , Yk) (see Section 3.1 for a de�nition of Y).
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