MATHEMATICS PREPARATION WORKBOOK

FP15 Finance

UNIVERSITY OF WARWICK

Contents

Expanding brackets and simplifying expressions	2
Surds and rationalising the denominator	4
Rules of indices	8
Factorising expressions	11
Completing the square	14
Solving quadratic equations by factorisation	16
Solving quadratic equations by completing the square	18
Solving quadratic equations by using the formula	20
Sketching quadratic graphs	22
Solving linear simultaneous equations using the elimination method	24
Solving linear simultaneous equations using the substitution method	
Solving linear and quadratic simultaneous equations	
Solving simultaneous equations graphically	
Linear inequalities	
Quadratic inequalities	
Straight line graphs	

Expanding brackets and simplifying expressions

Key points

- When you expand one set of brackets you must multiply everything inside the bracket by what is outside.
- When you expand two linear expressions, each with two terms of the form ax + b, where $a \neq 0$ and $b \neq 0$, you create four terms. Two of these can usually be simplified by collecting like terms.

Examples

Example 1 Expand 4(3x-2)

4(3x-2) = 12x - 8	Multiply everything inside the bracket by the 4 outside the bracket
-------------------	---

Example 2 Expand and simplify 3(x+5) - 4(2x+3)

3(x+5) - 4(2x+3) = 3x + 15 - 8x - 12	1 Expand each set of brackets separately by multiplying $(x + 5)$ by 3 and $(2x + 3)$ by -4
= 3 - 5x	2 Simplify by collecting like terms: 3x - 8x = -5x and $15 - 12 = 3$

Example 3 Expand and simplify (x + 3)(x + 2)

(x+3)(x+2) = x(x+2) + 3(x+2)	1 Expand the brackets by multiplying $(x + 2)$ by x and $(x + 2)$ by 3
$=x^{2}+2x+3x+6$	2 Simplify by collecting like terms:
$= x^2 + 5x + 6$	2 Simplify by collecting like terms: 2x + 3x = 5x

Example 4 Expand and simplify (x - 5)(2x + 3)

(x-5)(2x+3) = x(2x+3) - 5(2x+3)	1 Expand the brackets by multiplying $(2x + 3)$ by x and $(2x + 3)$ by -5
$= 2x^{2} + 3x - 10x - 15$ $= 2x^{2} - 7x - 15$	2 Simplify by collecting like terms: 3x - 10x = -7x

1	Expand.			Watch out!
	a $3(2x-1)$	b	$-2(5pq+4q^2)$	When multiplying (or
2	Expand and simplify. a $7(3x+5) + 6(2x-8)$	b	8(5p-2) - 3(4p+9)	dividing) positive and negative numbers, if the signs are the same the answer is '+'; if the
3	Expand. a $3x(4x + 8)$	b	$4k(5k^2 - 12)$	signs are different the answer is '-'.
4	Expand and simplify. a $3(y^2 - 8) - 4(y^2 - 5)$	b	2x(x+5) + 3x(x-7)	
5	Expand and simplify. a $13-2(m+7)$	b	$5p(p^2+6p)-9p(2p-3)$	
6	The diagram shows a rectangle.			
	Write down an expression, in terms of the rectangle.	x, fo	The area of $3x - 5$	

7x

7 Expand and simplify.

 $21x^2 - 35x$

a	(x+4)(x+5)	b	(x+7)(x+3)
c	(x+7)(x-2)	d	(x+5)(x-5)
e	(5x-3)(2x-5)	f	(3x-2)(7+4x)
g	$(2x-7)^2$	h	$(4x - 3y)^2$

Show that the area of the rectangle can be written as

8 Expand and simplify.

a
$$\left(x+\frac{1}{x}\right)\left(x-\frac{2}{x}\right)$$
 b $\left(x+\frac{1}{x}\right)^2$

Surds and rationalising the denominator

Key points

- A surd is the square root of a number that is not a square number, for example $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, etc.
- Surds can be used to give the exact value for an answer.

•
$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$

•
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

- To rationalise the denominator means to remove the surd from the denominator of a fraction.
- To rationalise $\frac{a}{\sqrt{b}}$ you multiply the numerator and denominator by the surd \sqrt{b}
- To rationalise $\frac{a}{b+\sqrt{c}}$ you multiply the numerator and denominator by $b-\sqrt{c}$

Examples

Example 1 Simplify $\sqrt{50}$

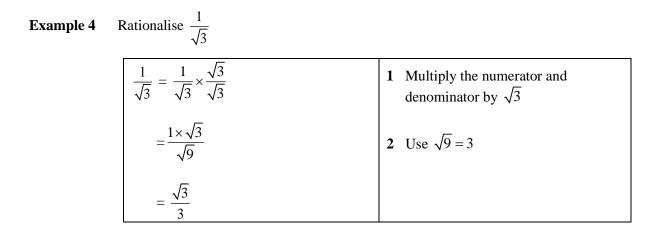
$\sqrt{50} = \sqrt{25 \times 2}$	1 Choose two numbers that are factors of 50. One of the factors must be a square number
$=\sqrt{25} \times \sqrt{2}$ $= 5 \times \sqrt{2}$	2 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$ 3 Use $\sqrt{25} = 5$
$=5\sqrt{2}$	

Example 2 Simplify $\sqrt{147} - 2\sqrt{12}$

$\sqrt{147} - 2\sqrt{12}$ $= \sqrt{49 \times 3} - 2\sqrt{4 \times 3}$	1 Simplify $\sqrt{147}$ and $2\sqrt{12}$. Choose two numbers that are factors of 147 and two numbers that are factors of 12. One of each pair of factors must be a square number
$=\sqrt{49}\times\sqrt{3}-2\sqrt{4}\times\sqrt{3}$	2 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
$= 7 \times \sqrt{3} - 2 \times 2 \times \sqrt{3}$	3 Use $\sqrt{49} = 7$ and $\sqrt{4} = 2$
$= 7\sqrt{3} - 4\sqrt{3}$ $= 3\sqrt{3}$	4 Collect like terms

Example 3 Simplify $(\sqrt{7} + \sqrt{2})(\sqrt{7} - \sqrt{2})$

$ \left(\sqrt{7} + \sqrt{2}\right)\left(\sqrt{7} - \sqrt{2}\right) $ $= \sqrt{49} - \sqrt{7}\sqrt{2} + \sqrt{2}\sqrt{7} - \sqrt{4} $	1 Expand the brackets. A common mistake here is to write $(\sqrt{7})^2 = 49$
= 7 - 2	2 Collect like terms:
= 5	$-\sqrt{7}\sqrt{2} + \sqrt{2}\sqrt{7}$ $= -\sqrt{7}\sqrt{2} + \sqrt{7}\sqrt{2} = 0$



Example 5 Rationalise and simplify
$$\frac{\sqrt{2}}{\sqrt{12}}$$

$$\frac{\sqrt{2}}{\sqrt{12}} = \frac{\sqrt{2}}{\sqrt{12}} \times \frac{\sqrt{12}}{\sqrt{12}}$$

$$= \frac{\sqrt{2} \times \sqrt{4 \times 3}}{\sqrt{12}}$$
2 Simplify $\sqrt{12}$ in the numer

$$\overline{2} = \sqrt{12} \times \sqrt{12}$$

$$= \frac{\sqrt{2} \times \sqrt{4 \times 3}}{12}$$

$$= \frac{\sqrt{2} \times \sqrt{4 \times 3}}{12}$$

$$= \frac{\sqrt{2} \times \sqrt{4 \times 3}}{12}$$

$$= \frac{\sqrt{2} \sqrt{3}}{12}$$

$$= \frac{\sqrt{2} \sqrt{3}}{6}$$

$$denominator by $\sqrt{12}$

$$denominator by $\sqrt{12}$

$$Choose two numbers that are factors of 12. One of the factors must be a square number$$

$$3 \text{ Use the rule } \sqrt{ab} = \sqrt{a} \times \sqrt{b}$$

$$4 \text{ Use } \sqrt{4} = 2$$

$$5 \text{ Simplify the fraction:}$$

$$\frac{2}{12} \text{ simplifies to } \frac{1}{6}$$$$$$

$\frac{3}{2+\sqrt{5}} = \frac{3}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}$	1 Multiply the numerator and denominator by $2 - \sqrt{5}$
$=\frac{3\left(2-\sqrt{5}\right)}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}$	2 Expand the brackets
$=\frac{6-3\sqrt{5}}{4+2\sqrt{5}-2\sqrt{5}-5}$	3 Simplify the fraction
$= \frac{6-3\sqrt{5}}{-1}$ $= 3\sqrt{5}-6$	 4 Divide the numerator by −1 Remember to change the sign of all terms when dividing by −1

Example 6 Rationalise and simplify $\frac{3}{2+\sqrt{5}}$

T			
Р	'no	<u>et</u> i	ice
1	1 a		ιιι

1

Sin	nplify.		
a	$\sqrt{45}$	b	$\sqrt{125}$
c	$\sqrt{48}$	d	$\sqrt{175}$

2 Simplify.

a	$\sqrt{72} + \sqrt{162}$	b	$\sqrt{45} - 2\sqrt{5}$
c	$\sqrt{50} - \sqrt{8}$	d	$\sqrt{75} - \sqrt{48}$

3	Exp	oand and simplify.		
	a	$(\sqrt{2} + \sqrt{3})(\sqrt{2} - \sqrt{3})$	b	$(3+\sqrt{3})(5-\sqrt{12})$
	c	$(4-\sqrt{5})(\sqrt{45}+2)$	d	$(5+\sqrt{2})(6-\sqrt{8})$

4 Rationalise and simplify, if possible.

a	$\frac{2}{\sqrt{7}}$	b	$\frac{2}{\sqrt{8}}$
c	$\frac{\sqrt{8}}{\sqrt{24}}$	d	$\frac{\sqrt{5}}{\sqrt{45}}$

Hint
One of the two
numbers you
choose at the start
must be a square
number.

Watch out!

Check you have chosen the highest square number at the start. Rationalise and simplify.

a
$$\frac{1}{3-\sqrt{5}}$$
 b $\frac{2}{4+\sqrt{3}}$

6 Expand and simplify
$$(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y})$$

7 Rationalise and simplify, if possible.

a
$$\frac{1}{\sqrt{9}-\sqrt{8}}$$
 b $\frac{1}{\sqrt{x}-\sqrt{y}}$

Rules of indices

Key points

- $a^m \times a^n = a^{m+n}$
- $\frac{a^m}{a^n} = a^{m-n}$
- $(a^m)^n = a^{mn}$ $a^0 = 1$
- $a^{\frac{1}{n}} = \sqrt[n]{a}$ i.e. the *n*th root of *a*

•
$$a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$$

•
$$a^{-m} = \frac{1}{a^m}$$

• The square root of a number produces two solutions, e.g. $\sqrt{16} = \pm 4$.

Examples

$10^0 = 1$	Any value raised to the power of zero is equal to 1
------------	---

Example 2 Evaluate
$$9^{\frac{1}{2}}$$

$9^{\frac{1}{2}} = \sqrt{9}$ $= 3$	Use the rule $a^{\frac{1}{n}} = \sqrt[n]{a}$
------------------------------------	--

Example 3

Evaluate $27^{\frac{2}{3}}$

$27^{\frac{2}{3}} = (\sqrt[3]{27})^2$	1 Use the rule $a^{\frac{m}{n}} = (\sqrt[n]{a})^m$
$= 3^{2}$ = 9	2 Use $\sqrt[3]{27} = 3$

Evaluate 4⁻² Example 4

$$4^{-2} = \frac{1}{4^2}$$

$$= \frac{1}{16}$$
1 Use the rule $a^{-m} = \frac{1}{a^m}$
2 Use $4^2 = 16$

Example 5 Simplify $\frac{6x^5}{2x^2}$

$$\frac{6x^5}{2x^2} = 3x^3$$

$$6 \div 2 = 3 \text{ and use the rule } \frac{a^m}{a^n} = a^{m-n} \text{ to}$$
give $\frac{x^5}{x^2} = x^{5-2} = x^3$

Example 6

Simplify $\frac{x^3 \times x^5}{x^4}$

$$\frac{x^{3} \times x^{5}}{x^{4}} = \frac{x^{3+5}}{x^{4}} = \frac{x^{8}}{x^{4}}$$

$$= x^{8-4} = x^{4}$$
1 Use the rule $a^{m} \times a^{n} = a^{m+n}$
2 Use the rule $\frac{a^{m}}{a^{n}} = a^{m-n}$

Example 7 Write $\frac{1}{3x}$ as a single power of x

$\frac{1}{3x} = \frac{1}{3}x^{-1}$	Use the rule $\frac{1}{a^m} = a^{-m}$, note that the
	fraction $\frac{1}{3}$ remains unchanged

Example 8 Write $\frac{4}{\sqrt{x}}$ as a single power of x

$\frac{4}{\sqrt{x}} = \frac{4}{x^{\frac{1}{2}}}$	1 Use the rule $a^{\frac{1}{n}} = \sqrt[n]{a}$
$=4x^{-\frac{1}{2}}$	2 Use the rule $\frac{1}{a^m} = a^{-m}$

1	Evaluate. a 14 ⁰	b	3 ⁰ 3	Eval	uate. $25^{\frac{3}{2}}$	b	$8^{\frac{5}{3}}$
2	Evaluate. a $49^{\frac{1}{2}}$	b	$64^{\frac{1}{3}}$ 4		uate. 5 ⁻²	b	4-3
5	Simplify. a $\frac{3x^2 \times x^3}{2x^2}$ c $\frac{(2x^2)^3}{4x^0}$	b d	$\frac{10x^5}{2x^2 \times x}$ $\frac{x^{\frac{1}{2}} \times x^{\frac{3}{2}}}{x^{-2} \times x^3}$		Watch out!Remember thatany value raised tothe power of zerois 1. This is therule $a^0 = 1$.		
6	Evaluate. a $4^{-\frac{1}{2}}$	b	$27^{-\frac{2}{3}}$	с	$9^{-\frac{1}{2}} \times 2^{3}$		
7	Write the following as a s a $\frac{1}{x}$		power of x. $\frac{1}{x^7}$	c	$\sqrt[4]{x}$		
8	Write the following withover $\mathbf{a} = x^{\frac{2}{5}}$		ative or fractional p $x^{-\frac{1}{2}}$	oowers. c	$x^{-\frac{3}{4}}$		
9	Write the following in the a $5\sqrt{x}$		ax^n . $\frac{2}{x^3}$	c	$\frac{1}{3x^4}$		
10	Write as sums of powers of $\mathbf{a} = \frac{x^5 + 1}{x^2}$		$x^2\left(x+\frac{1}{x}\right)$	c	$x^{-4}\left(x^2 + \frac{1}{x^3}\right)$		

Factorising expressions

Key points

- Factorising an expression is the opposite of expanding the brackets.
- A quadratic expression is in the form $ax^2 + bx + c$, where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is b and whose product is ac.
- An expression in the form $x^2 y^2$ is called the difference of two squares. It factorises to (x y)(x + y).

Examples

Example 1 Factorise $15x^2y^3 + 9x^4y$

$15x^2y^3 + 9x^4y = 3x^2y(5y^2 + 3x^2)$	The highest common factor is $3x^2y$. So take $3x^2y$ outside the brackets and then divide each term by $3x^2y$ to find the terms in the brackets
---	---

Example 2 Factorise $4x^2 - 25y^2$

$4x^2 - 25y^2 = (2x + 5y)(2x - 5y)$	This is the difference of two squares as the two terms can be written as $(2x)^2$ and $(5y)^2$
-------------------------------------	--

Example 3 Factorise $x^2 + 3x - 10$

b = 3, ac = -10	1 Work out the two factors of ac = -10 which add to give $b = 3(5 and -2)$
So $x^2 + 3x - 10 = x^2 + 5x - 2x - 10$	2 Rewrite the <i>b</i> term $(3x)$ using these two factors
= x(x+5) - 2(x+5)	3 Factorise the first two terms and the last two terms
= (x+5)(x-2)	4 $(x+5)$ is a factor of both terms

Example 4 Factorise $6x^2 - 11x - 10$

b = -11, ac = -60	1 Work out the two factors of $ac = -60$ which add to give $b = -11$
So	ac = -60 which add to give $b = -11(-15 and 4)$
$6x^2 - 11x - 10 = 6x^2 - 15x + 4x - 10$	2 Rewrite the <i>b</i> term $(-11x)$ using
= 3x(2x-5) + 2(2x-5)	these two factors3 Factorise the first two terms and the
	last two terms
=(2x-5)(3x+2)	4 $(2x-5)$ is a factor of both terms

Simplify $\frac{x^2 - 4x - 21}{2x^2 + 9x + 9}$

$\frac{x^2 - 4x - 21}{2x^2 + 9x + 9}$	1 Factorise the numerator and the denominator
For the numerator: b = -4, $ac = -21$	2 Work out the two factors of ac = -21 which add to give $b = -4(-7 and 3)$
So $x^2 - 4x - 21 = x^2 - 7x + 3x - 21$	3 Rewrite the <i>b</i> term $(-4x)$ using these two factors
= x(x-7) + 3(x-7)	4 Factorise the first two terms and the last two terms
= (x-7)(x+3)	5 $(x-7)$ is a factor of both terms
For the denominator: b = 9, $ac = 18$	6 Work out the two factors of ac = 18 which add to give $b = 9(6 and 3)$
So $2x^2 + 9x + 9 = 2x^2 + 6x + 3x + 9$	7 Rewrite the <i>b</i> term $(9x)$ using these two factors
= 2x(x+3) + 3(x+3)	8 Factorise the first two terms and the last two terms
= (x+3)(2x+3) So	9 $(x+3)$ is a factor of both terms
$\frac{x^2 - 4x - 21}{2x^2 + 9x + 9} = \frac{(x - 7)(x + 3)}{(x + 3)(2x + 3)}$ $= \frac{x - 7}{2x + 3}$	10 $(x + 3)$ is a factor of both the numerator and denominator so cancels out as a value divided by itself is 1

1	Fac	ctorise.		
	a	$6x^4y^3 - 10x^3y^4$	b	$21a^3b^5 + 35a^5b^2$
	c	$25x^2y^2 - 10x^3y^2 + 15x^2y^3$		
2	Fac	ctorise		
	a	$x^2 + 7x + 12$	b	$x^2 + 5x - 14$
	c	$x^2 - 11x + 30$	d	$x^2 - 5x - 24$
3	Fac	ctorise		
	a	$36x^2 - 49y^2$	b	$4x^2 - 81y^2$
	c	$18a^2 - 200b^2c^2$		
4	Fac	ctorise		
	a	$2x^2 + x - 3$	b	$6x^2 + 17x + 5$
	c	$2x^2 + 7x + 3$	d	$9x^2 - 15x + 4$
5	Sir	nplify the algebraic fractions.		
	a	$\frac{2x^2 + 4x}{x^2 - x}$	b	$\frac{x^2 + 3x}{x^2 + 2x - 3}$
	c	$\frac{x^2-2x-8}{x^2-4x}$	d	$\frac{x^2 - 5x}{x^2 - 25}$
6	Sir	nplify		

a
$$\frac{9x^2 - 16}{3x^2 + 17x - 28}$$

b $\frac{2x^2 - 7x - 15}{3x^2 - 17x + 10}$
c $\frac{4 - 25x^2}{10x^2 - 11x - 6}$
d $\frac{6x^2 - x - 1}{2x^2 + 7x - 4}$

c
$$\frac{10x^2 - 11x - 6}{10x^2 - 11x - 6}$$
 d

7 Simplify
$$\frac{(x+2)^2 + 3(x+2)^2}{x^2 - 4}$$

Hint

Take the highest common factor outside the bracket.

Completing the square

Key points

- Completing the square for a quadratic rearranges $ax^2 + bx + c$ into the form $p(x+q)^2 + r$
- If $a \neq 1$, then factorise using *a* as a common factor.

Examples

Example 1 Complete the square for the quadratic expression $x^2 + 6x - 2$

$x^2 + 6x - 2$	1 Write $x^2 + bx + c$ in the form
$=(x+3)^2-9-2$	$\left(x+\frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c$
$=(x+3)^2-11$	2 Simplify

Example 2 Write $2x^2 - 5x + 1$ in the form $p(x + q)^2 + r$

$2x^2 - 5x + 1$	1 Before completing the square write $ax^2 + bx + c$ in the form $a\left(x^2 + \frac{b}{a}x\right) + c$
$= 2\left(x^2 - \frac{5}{2}x\right) + 1$	2 Now complete the square by writing $x^2 - \frac{5}{2}x$ in the form
$= 2\left[\left(x - \frac{5}{4}\right)^2 - \left(\frac{5}{4}\right)^2\right] + 1$	$\left(x+\frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2$
$= 2\left(x - \frac{5}{4}\right)^2 - \frac{25}{8} + 1$	3 Expand the square brackets – don't forget to multiply $\left(\frac{5}{4}\right)^2$ by the
$= 2\left(x-\frac{5}{4}\right)^2 - \frac{17}{8}$	factor of 2 4 Simplify

- 1 Write the following quadratic expressions in the form $(x + p)^2 + q$
 - **a** $x^2 + 4x + 3$ **b** $x^2 - 10x - 3$ **c** $x^2 - 8x$ **d** $x^2 + 6x$

2 Write the following quadratic expressions in the form $p(x+q)^2 + r$ a $2x^2 - 8x - 16$ b $4x^2 - 8x - 16$ c $3x^2 + 12x - 9$ d $2x^2 + 6x - 8$

3 Complete the square.

a	$2x^2 + 3x + 6$	b	$3x^2 - 2x$
c	$5x^2 + 3x$	d	$3x^2 + 5x + 3$

4 Write $(25x^2 + 30x + 12)$ in the form $(ax + b)^2 + c$.

Solving quadratic equations by factorisation

Key points

- A quadratic equation is an equation in the form $ax^2 + bx + c = 0$ where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is *b* and whose products is *ac*.
- When the product of two numbers is 0, then at least one of the numbers must be 0.
- If a quadratic can be solved it will have two solutions (these may be equal).

Examples

Example 1 Solve $5x^2 = 15x$

$5x^{2} = 15x$ $5x^{2} - 15x = 0$ $5x(x - 3) = 0$	 Rearrange the equation so that all of the terms are on one side of the equation and it is equal to zero. Do not divide both sides by <i>x</i> as this would lose the solution <i>x</i> = 0. Factorise the quadratic equation.
	5x is a common factor.
So $5x = 0$ or $(x - 3) = 0$	3 When two values multiply to make zero, at least one of the values must be zero.
Therefore $x = 0$ or $x = 3$	4 Solve these two equations.

Example 2 Solve $x^2 + 7x + 12 = 0$

$x^{2} + 7x + 12 = 0$	1 Factorise the quadratic equation.
	Work out the two factors of $ac = 12$
b = 7, ac = 12	which add to give you $b = 7$.
	(4 and 3)
	· · · · · ·
$x^2 + 4x + 3x + 12 = 0$	2 Rewrite the <i>b</i> term $(7x)$ using these
	two factors.
x(x+4) + 3(x+4) = 0	3 Factorise the first two terms and the
	last two terms.
$(\cdot \cdot$	
(x+4)(x+3) = 0	4 $(x+4)$ is a factor of both terms.
So $(x + 4) = 0$ or $(x + 3) = 0$	5 When two values multiply to make
	zero, at least one of the values must
	be zero.
Therefore $x = -4$ or $x = -3$	6 Solve these two equations.
	•

Example 3 Solve $9x^2 - 16 = 0$

$9x^2 - 16 = 0$ (3x + 4)(3x - 4) = 0	1 Factorise the quadratic equation. This is the difference of two squares as the two terms are $(3x)^2$ and $(4)^2$.
So $(3x + 4) = 0$ or $(3x - 4) = 0$	2 When two values multiply to make zero, at least one of the values must
$x = -\frac{4}{3}$ or $x = \frac{4}{3}$	be zero.3 Solve these two equations.

Example 4 Solve $2x^2 - 5x - 12 = 0$

b = -5, ac = -24	1 Factorise the quadratic equation. Work out the two factors of $ac = -24$ which add to give you $b = -5$. (-8 and 3)
So $2x^2 - 8x + 3x - 12 = 0$	2 Rewrite the <i>b</i> term $(-5x)$ using these two factors.
2x(x-4) + 3(x-4) = 0	3 Factorise the first two terms and the last two terms.
(x-4)(2x+3) = 0	4 $(x-4)$ is a factor of both terms.
So $(x-4) = 0$ or $(2x+3) = 0$	5 When two values multiply to make zero, at least one of the values must
$x = 4$ or $x = -\frac{3}{2}$	be zero.6 Solve these two equations.

Practice

1	Sol	ve		
	a	$6x^2 + 4x = 0$	b	$28x^2 - 21x = 0$
	c	$x^2 + 7x + 10 = 0$	d	$x^2 - 5x + 6 = 0$
	e	$x^2 - 3x - 4 = 0$	f	$x^2 + 3x - 10 = 0$
2	Sol	ve		
	a	$x^2 - 3x = 10$	b	$x^2 - 3 = 2x$
	c	$x(3x+1) = x^2 + 15$	d	3x(x-1) = 2(x+1)

Hint

Get all terms onto one side of the equation.

Solving quadratic equations by completing the square

Key points

• Completing the square lets you write a quadratic equation in the form $p(x+q)^2 + r = 0$.

Examples

Example 1 Solve $x^2 + 6x + 4 = 0$. Give your solutions in surd form.

$x^2 + 6x + 4 = 0$	1 Write $x^2 + bx + c = 0$ in the form
$(x+3)^2 - 9 + 4 = 0$	$\left(x+\frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c = 0$
$(x+3)^2 - 5 = 0$ (x+3)^2 = 5	2 Simplify.
$(x+3)^2 = 5$	3 Rearrange the equation to work out
	x. First, add 5 to both sides.
$x + 3 = \pm \sqrt{5}$	4 Square root both sides.
	Remember that the square root of a
$x = \pm \sqrt{5} - 3$	value gives two answers.
$x = \pm \sqrt{3} - 3$	5 Subtract 3 from both sides to solve
	the equation.
So $x = -\sqrt{5} - 3$ or $x = \sqrt{5} - 3$	6 Write down both solutions.

Example 2 Solve $2x^2 - 7x + 4 = 0$. Give your solutions in surd form.

$2x^{2} - 7x + 4 = 0$ $2\left(x^{2} - \frac{7}{2}x\right) + 4 = 0$	1 Before completing the square write $ax^2 + bx + c$ in the form $a\left(x^2 + \frac{b}{a}x\right) + c$
$2\left[\left(x-\frac{7}{4}\right)^2 - \left(\frac{7}{4}\right)^2\right] + 4 = 0$	2 Now complete the square by writing $x^2 - \frac{7}{2}x$ in the form $\left(x + \frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2$
$2\left(x - \frac{7}{4}\right)^2 - \frac{49}{8} + 4 = 0$	3 Expand the square brackets.
$2\left(x - \frac{7}{4}\right)^2 - \frac{17}{8} = 0$	4 Simplify.
$2\left(x-\frac{7}{4}\right)^2 = \frac{17}{8}$	 (continued on next page) 5 Rearrange the equation to work out <i>x</i>. First, add ¹⁷/₈ to both sides.

$$\begin{pmatrix} x - \frac{7}{4} \end{pmatrix}^2 = \frac{17}{16}$$

$$x - \frac{7}{4} = \pm \frac{\sqrt{17}}{4}$$

$$x = \pm \frac{\sqrt{17}}{4} + \frac{7}{4}$$

So $x = \frac{7}{4} - \frac{\sqrt{17}}{4}$ or $x = \frac{7}{4} + \frac{\sqrt{17}}{4}$

6 Divide both sides by 2.

7 Square root both sides. Remember that the square root of a value gives two answers.

8 Add $\frac{7}{4}$ to both sides.

9 Write down both the solutions.

- **1** Solve by completing the square.
 - **a** $x^2 4x 3 = 0$
 - **c** $x^2 + 8x 5 = 0$

b $x^2 - 10x + 4 = 0$ **d** $x^2 - 2x - 6 = 0$

2 Solve by completing the square.

a
$$(x-4)(x+2) = 5$$

- **b** $2x^2 + 6x 7 = 0$
- **c** $x^2 5x + 3 = 0$

Get all terms onto one side of the equation.

Solving quadratic equations by using the formula

Key points

• Any quadratic equation of the form $ax^2 + bx + c = 0$ can be solved using the formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

• If
$$b^2 - 4ac$$
 is negative then the quadratic equation does not have any real solutions.

If b² - 4ac is negative then the quadratic equation does not have any real solutions
It is useful to write down the formula before substituting the values for a, b and c.

Examples

$a = 1, b = 6, c = 4$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	1 Identify <i>a</i> , <i>b</i> and <i>c</i> and write down the formula. Remember that $-b \pm \sqrt{b^2 - 4ac}$ is all over 2 <i>a</i> , not just part of it.
$x = \frac{-6 \pm \sqrt{6^2 - 4(1)(4)}}{2(1)}$	2 Substitute $a = 1, b = 6, c = 4$ into the formula.
$x = \frac{-6 \pm \sqrt{6^2 - 4(1)(4)}}{2(1)}$ $x = \frac{-6 \pm \sqrt{20}}{2}$	3 Simplify. The denominator is 2, but this is only because $a = 1$. The denominator will not always be 2.
$x = \frac{-6 \pm 2\sqrt{5}}{2}$	4 Simplify $\sqrt{20}$. $\sqrt{20} = \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} = 2\sqrt{5}$
$x = -3 \pm \sqrt{5}$	5 Simplify by dividing numerator and denominator by 2.
So $x = -3 - \sqrt{5}$ or $x = \sqrt{5} - 3$	6 Write down both the solutions.

Example 1 Solve $x^2 + 6x + 4 = 0$. Give your solutions in surd form.

$a = 3, b = -7, c = -2$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	1 Identify <i>a</i> , <i>b</i> and <i>c</i> , making sure you get the signs right and write down the formula. Remember that $-b \pm \sqrt{b^2 - 4ac}$ is all over 2 <i>a</i> , not just part of it.
$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(3)(-2)}}{2(3)}$	2 Substitute $a = 3, b = -7, c = -2$ into the formula.
$x = \frac{7 \pm \sqrt{73}}{6}$ So $x = \frac{7 - \sqrt{73}}{6}$ or $x = \frac{7 + \sqrt{73}}{6}$	 3 Simplify. The denominator is 6 when a = 3. A common mistake is to always write a denominator of 2. 4 Write down both the solutions.

Example 2 Solve $3x^2 - 7x - 2 = 0$. Give your solutions in surd form.

Practice

- 1 Solve, giving your solutions in surd form. **a** $3x^2 + 6x + 2 = 0$ **b** $2x^2 - 4x - 7 = 0$
- 2 Solve the equation $x^2 7x + 2 = 0$ Give your solutions in the form $\frac{a \pm \sqrt{b}}{c}$, where *a*, *b* and *c* are integers.
- 3 Solve $10x^2 + 3x + 3 = 5$ Give your solution in surd form.

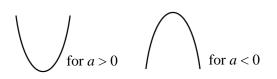
Hint

Get all terms onto one side of the equation.

Sketching quadratic graphs

Key points

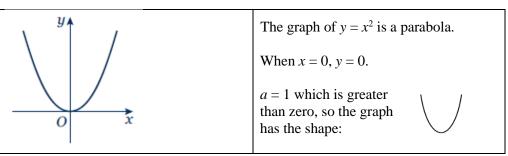
- The graph of the quadratic function $y = ax^2 + bx + c$, where $a \neq 0$, is a curve called a parabola.
- Parabolas have a line of symmetry and a shape as shown.



- To sketch the graph of a function, find the points where the graph intersects the axes.
- To find where the curve intersects the *y*-axis substitute x = 0 into the function.
- To find where the curve intersects the x-axis substitute y = 0 into the function.
- At the turning points of a graph the gradient of the curve is 0 and any tangents to the curve at these points are horizontal.
- To find the coordinates of the maximum or minimum point (turning points) of a quadratic curve (parabola) you can use the completed square form of the function.

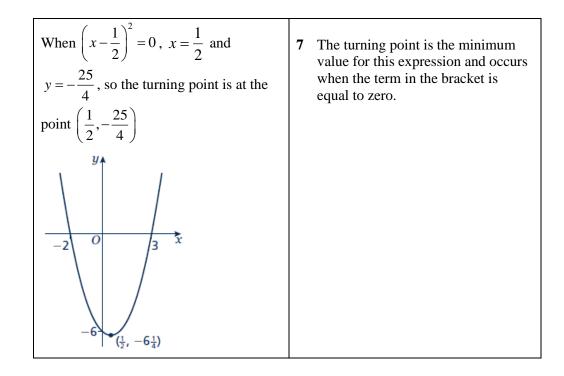
Examples

Example 1 Sketch the graph of $y = x^2$.



Example 2 Sketch the graph of $y = x^2 - x - 6$.

When x = 0, $y = 0^2 - 0 - 6 = -6$ 1 Find where the graph intersects the So the graph intersects the y-axis at y-axis by substituting x = 0. (0, -6)When y = 0, $x^2 - x - 6 = 0$ 2 Find where the graph intersects the *x*-axis by substituting y = 0. (x+2)(x-3) = 0**3** Solve the equation by factorising. x = -2 or x = 34 Solve (x + 2) = 0 and (x - 3) = 0. a = 1 which is greater So. 5 the graph intersects the x-axis at (-2, 0)than zero, so the graph and (3, 0) has the shape: (continued on next page) $x^{2}-x-6 = \left(x-\frac{1}{2}\right)^{2}-\frac{1}{4}-6$ 6 To find the turning point, complete the square. $=\left(x-\frac{1}{2}\right)^2-\frac{25}{4}$



- **1** Sketch the graph of $y = -x^2$.
- 2 Sketch each graph, labelling where the curve crosses the axes. **a** y = (x + 2)(x - 1) **b** y = x(x - 3)
- 3 Sketch each graph, labelling where the curve crosses the axes. **a** $y = x^2 - x - 6$ **b** $y = x^2 - 5x + 4$ **c** $y = x^2 - 4$
- 4 Sketch each graph. Label where the curve crosses the axes and write down the coordinates of the turning point.

a $y = x^2 - 5x + 6$ **b** $y = -x^2 + 7x - 12$

5 Sketch the graph of $y = x^2 + 2x + 1$. Label where the curve crosses the axes and write down the equation of the line of symmetry.

Solving linear simultaneous equations using the elimination method

Key points

- Two equations are simultaneous when they are both true at the same time.
- Solving simultaneous linear equations in two unknowns involves finding the value of each unknown which works for both equations.
- Make sure that the coefficient of one of the unknowns is the same in both equations.
- Eliminate this equal unknown by either subtracting or adding the two equations.

Examples

3x + y = 5 $- x + y = 1$ $2x = 4$ So $x = 2$	1 Subtract the second equation from the first equation to eliminate the <i>y</i> term.
Using $x + y = 1$ 2 + y = 1 So $y = -1$	2 To find the value of y, substitute $x = 2$ into one of the original equations.
Check: equation 1: $3 \times 2 + (-1) = 5$ YES equation 2: $2 + (-1) = 1$ YES	3 Substitute the values of <i>x</i> and <i>y</i> into both equations to check your answers.

Example 1 Solve the simultaneous equations 3x + y = 5 and x + y = 1

Example 2 Solve x + 2y = 13 and 5x - 2y = 5 simultaneously.

x + 2y = 13 + 5x - 2y = 5 6x = 18 So x = 3	1 Add the two equations together to eliminate the <i>y</i> term.
Using $x + 2y = 13$ 3 + 2y = 13 So y = 5	2 To find the value of y, substitute $x = 3$ into one of the original equations.
Check: equation 1: $3 + 2 \times 5 = 13$ YES equation 2: $5 \times 3 - 2 \times 5 = 5$ YES	3 Substitute the values of <i>x</i> and <i>y</i> into both equations to check your answers.

$(2x + 3y = 2) \times 4 \rightarrow 8x + 12y = 8$ $(5x + 4y = 12) \times 3 \rightarrow 15x + 12y = 36$ $7x = 28$ So $x = 4$	1 Multiply the first equation by 4 and the second equation by 3 to make the coefficient of <i>y</i> the same for both equations. Then subtract the first equation from the second equation to eliminate the <i>y</i> term.
Using $2x + 3y = 2$ $2 \times 4 + 3y = 2$ So $y = -2$	2 To find the value of y, substitute $x = 4$ into one of the original equations.
Check: equation 1: $2 \times 4 + 3 \times (-2) = 2$ YES equation 2: $5 \times 4 + 4 \times (-2) = 12$ YES	3 Substitute the values of <i>x</i> and <i>y</i> into both equations to check your answers.

Example 3 Solve 2x + 3y = 2 and 5x + 4y = 12 simultaneously.

Practice

Solve these simultaneous equations.

- **1** 4x + y = 8x + y = 5**2** 3x + y = 73x + 2y = 5
- **3** 4x + y = 33x - y = 11**4** 3x + 4y = 7x - 4y = 5

Solving linear simultaneous equations using the substitution method

Key points

• The subsitution method is the method most commonly used for A level. This is because it is the method used to solve linear and quadratic simultaneous equations.

Examples

Example 1 Solve the simultaneous equations y = 2x + 1 and 5x + 3y = 14

5x + 3(2x + 1) = 14 5x + 6x + 3 = 14 11x + 3 = 14 11x = 11 So $x = 1$	 Substitute 2x + 1 for y into the second equation. Expand the brackets and simplify. Work out the value of x.
Using $y = 2x + 1$ $y = 2 \times 1 + 1$ So $y = 3$	4 To find the value of y , substitute $x = 1$ into one of the original equations.
Check: equation 1: $3 = 2 \times 1 + 1$ YES equation 2: $5 \times 1 + 3 \times 3 = 14$ YES	5 Substitute the values of x and y into both equations to check your answers.

Example 2 Solve 2x - y = 16 and 4x + 3y = -3 simultaneously.

y = 2x - 164x + 3(2x - 16) = -3	 Rearrange the first equation. Substitute 2x - 16 for y into the second equation.
4x + 6x - 48 = -3 $10x - 48 = -3$	3 Expand the brackets and simplify.
10x - 48 = -5 10x = 45 So $x = 4\frac{1}{2}$	4 Work out the value of <i>x</i> .
Using $y = 2x - 16$ $y = 2 \times 4\frac{1}{2} - 16$ So $y = -7$	5 To find the value of y, substitute $x = 4\frac{1}{2}$ into one of the original equations.
Check: equation 1: $2 \times 4\frac{1}{2} - (-7) = 16$ YES equation 2: $4 \times 4\frac{1}{2} + 3 \times (-7) = -3$ YES	6 Substitute the values of <i>x</i> and <i>y</i> into both equations to check your answers.

Solve these simultaneous equations.

- 1
 y = x 4 2
 y = 2x 3

 2x + 5y = 43 5x 3y = 11

 3
 2y = 4x + 5 4
 2x = y 2

 9x + 5y = 22 8x 5y = -11
- 5 Solve the simultaneous equations 3x + 5y 20 = 0 and $2(x + y) = \frac{3(y x)}{4}$.

Solving linear and quadratic simultaneous equations

Key points

- Make one of the unknowns the subject of the linear equation (rearranging where necessary).
- Use the linear equation to substitute into the quadratic equation.
- There are usually two pairs of solutions.

Examples

Example 1 Solve the simultaneous equations y = x + 1 and $x^2 + y^2 = 13$

$x^{2} + (x + 1)^{2} = 13$ $x^{2} + x^{2} + x + x + 1 = 13$ $2x^{2} + 2x + 1 = 13$	 Substitute x + 1 for y into the second equation. Expand the brackets and simplify.
$2x^{2} + 2x - 12 = 0$ (2x - 4)(x + 3) = 0	3 Factorise the quadratic equation.
So x = 2 or x = -3	4 Work out the values of <i>x</i> .
Using $y = x + 1$ When $x = 2$, $y = 2 + 1 = 3$ When $x = -3$, $y = -3 + 1 = -2$	5 To find the value of <i>y</i> , substitute both values of <i>x</i> into one of the original equations.
So the solutions are $x = 2$, $y = 3$ and $x = -3$, $y = -2$	
Check: equation 1: $3 = 2 + 1$ YES and $-2 = -3 + 1$ YES	6 Substitute both pairs of values of <i>x</i> and <i>y</i> into both equations to check your answers.
equation 2: $2^2 + 3^2 = 13$ YES and $(-3)^2 + (-2)^2 = 13$ YES	

$x = \frac{5 - 3y}{2}$	1 Rearrange the first equation.
$2y^{2} + \left(\frac{5-3y}{2}\right)y = 12$ $2y^{2} + \frac{5y-3y^{2}}{2} = 12$ $4y^{2} + 5y - 3y^{2} = 24$	 Substitute \$\frac{5-3y}{2}\$ for x into the second equation. Notice how it is easier to substitute for x than for y. Expand the brackets and simplify.
$y^{2} + 5y - 24 = 0$ (y + 8)(y - 3) = 0 So y = -8 or y = 3 Using 2x + 3y = 5 When y = -8, 2x + 3 × (-8) = 5, x = 14.5 When y = 3, 2x + 3 × 3 = 5, x = -2	 4 Factorise the quadratic equation. 5 Work out the values of <i>y</i>. 6 To find the value of <i>x</i>, substitute both values of <i>y</i> into one of the original equations.
So the solutions are $x = 14.5$, $y = -8$ and $x = -2$, $y = 3$	9
Check: equation 1: $2 \times 14.5 + 3 \times (-8) = 5$ YES and $2 \times (-2) + 3 \times 3 = 5$ YES equation 2: $2 \times (-8)^2 + 14.5 \times (-8) = 12$ YES and $2 \times (3)^2 + (-2) \times 3 = 12$ YES	7 Substitute both pairs of values of <i>x</i> and <i>y</i> into both equations to check your answers.

Example 2	Solve $2x + 3y = 5$ and $2y^2 + xy = 12$ simultaneously.	
-----------	--	--

Solve these simultaneous equations.

1	y = 2x + 1	2	y = 6 - x
	$x^2 + y^2 = 10$		$x^2 + y^2 = 20$
3	y = 3x - 5	4	y = x - 5
	$y = x^2 - 2x + 1$		$y = x^2 - 5x - 12$
5	y = 2x	6	2x + y = 11
	$y^2 - xy = 8$		<i>xy</i> = 15

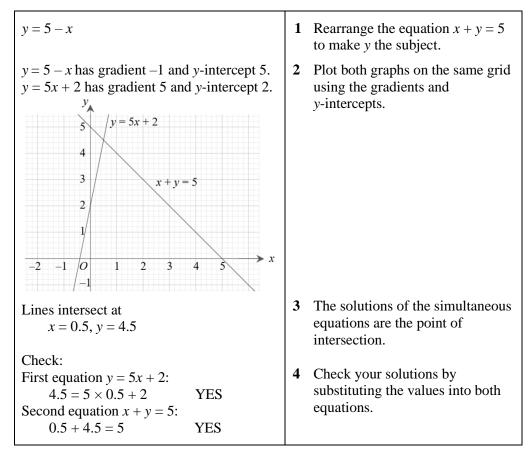
Solving simultaneous equations graphically

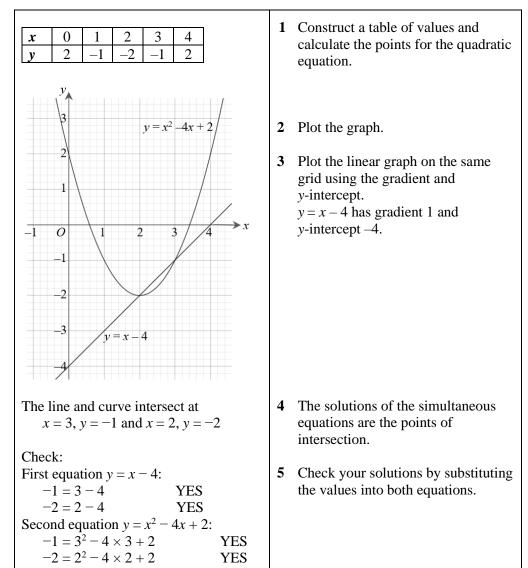
Key points

• You can solve any pair of simultaneous equations by drawing the graph of both equations and finding the point/points of intersection.

Examples

Example 1 Solve the simultaneous equations y = 5x + 2 and x + y = 5 graphically.





Example 2 Solve the simultaneous equations y = x - 4 and $y = x^2 - 4x + 2$ graphically.

- 1 Solve these pairs of simultaneous equations graphically.
 - **a** y = 3x 1 and y = x + 3
 - **b** y = x 5 and y = 7 5x
- 2 Solve these pairs of simultaneous equations graphically.
 - **a** x + y = 0 and y = 2x + 6
 - **b** 4x + 2y = 3 and y = 3x 1
- 3 Solve these pairs of simultaneous equations graphically.
 - **a** y = x 1 and $y = x^2 4x + 3$
 - **b** y = 1 3x and $y = x^2 3x 3$
- 4 Solve the simultaneous equations x + y = 1 and $x^2 + y^2 = 25$ graphically.

Hint

Rearrange the equation to make *y* the subject.

Linear inequalities

Key points

- Solving linear inequalities uses similar methods to those for solving linear equations.
- When you multiply or divide an inequality by a negative number you need to reverse the inequality sign, e.g. < becomes >.

Examples

Example 1 Solve $-8 \le 4x < 16$

$ \begin{array}{r} -8 \le 4x < 16 \\ -2 \le x \le 4 \end{array} $	Divide all three terms by 4.

Example 2 Solve $4 \le 5x < 10$

$4 \le 5x < 10$	Divide all three terms by 5.
$\frac{4}{5} \le x < 2$	

Example 3 Solve 2x - 5 < 7

	 Add 5 to both sides. Divide both sides by 2.
<i>x</i> < 6	

Example 4 Solve $2 - 5x \ge -8$

$2-5x \ge -8$ $-5x \ge -10$ $x \le 2$ 1 Subtract 2 from both sides. 2 Divide both sides by -5. Remember to reverse the inequal when dividing by a negative number.	lity
--	------

Example 5 Solve 4(x-2) > 3(9-x)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	xpand the brackets. Add 3x to both sides. Add 8 to both sides. Divide both sides by 7.
---	---

1	Solve these inequalities. a $4x > 16$	b	$5x - 7 \le 3$	c	$1 \ge 3x + 4$
2	Solve these inequalities. a $\frac{x}{5} < -4$	b	$10 \ge 2x + 3$	с	7 - 3x > -5
3	Solve a $2-4x \ge 18$	b	$3 \le 7x + 10 < 45$	c	$6 - 2x \ge 4$
4	Solve these inequalities. a $3t + 1 < t + 6$		b 2(3 <i>n</i> – 1)	$\geq n + \frac{4}{2}$	5

5 Find the set of values of x for which 2x + 1 > 11 and 4x - 2 > 16 - 2x.

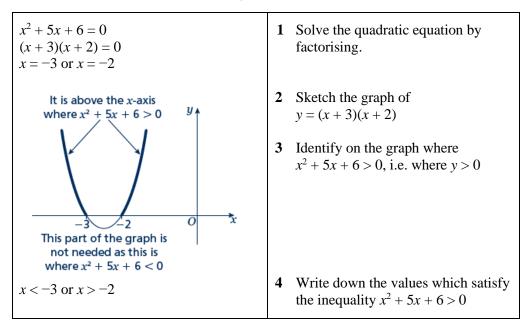
Quadratic inequalities

Key points

- First replace the inequality sign by = and solve the quadratic equation.
- Sketch the graph of the quadratic function.
- Use the graph to find the values which satisfy the quadratic inequality.

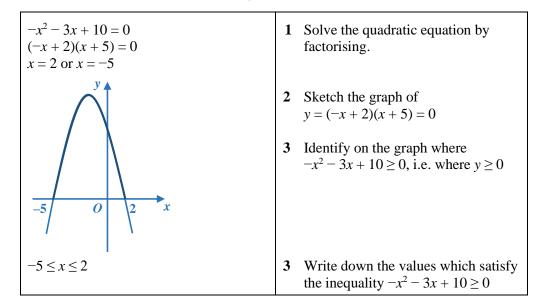
Examples

Example 1 Find the set of values of x which satisfy $x^2 + 5x + 6 > 0$



Example 2 Find the set of values of *x* which satisfy $x^2 - 5x \le 0$

$ x^2 - 5x = 0 x(x - 5) = 0 $	1 Solve the quadratic equation by factorising.
x = 0 or x = 5	2 Sketch the graph of $y = x(x-5)$
	3 Identify on the graph where $x^2 - 5x \le 0$, i.e. where $y \le 0$
$0 \le x \le 5$	4 Write down the values which satisfy the inequality $x^2 - 5x \le 0$



Example 3 Find the set of values of x which satisfy $-x^2 - 3x + 10 \ge 0$

- 1 Find the set of values of x for which $(x + 7)(x 4) \le 0$
- 2 Find the set of values of x for which $2x^2 7x + 3 < 0$
- 3 Find the set of values of x for which $12 + x x^2 \ge 0$

4 Find the set of values which satisfy the following inequalities.

x(2x-9) < -10

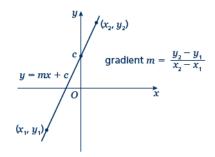
 $6x^2 \ge 15 + x$

Straight line graphs

Key points

- A straight line has the equation y = mx + c, where *m* is the gradient and *c* is the *y*-intercept (where x = 0).
- The equation of a straight line can be written in the form ax + by + c = 0, where *a*, *b* and *c* are integers.
- When given the coordinates (*x*₁, *y*₁) and (*x*₂, *y*₂) of two points on a line the gradient is calculated using the

formula $m = \frac{y_2 - y_1}{x_2 - x_1}$



Examples

Example 1 A straight line has gradient $-\frac{1}{2}$ and y-intercept 3.

Write the equation of the line in the form ax + by + c = 0.

$m = -\frac{1}{2}$ and $c = 3$ So $y = -\frac{1}{2}x + 3$	1 A straight line has equation y = mx + c. Substitute the gradient and y-intercept given in the question into this equation.
$\frac{1}{2}x + y - 3 = 0$ $x + 2y - 6 = 0$	 Rearrange the equation. Rearrange the equation so all the terms are on one side and 0 is on the other side. Multiply both sides by 2 to eliminate the denominator.

Example 2 Find the gradient and the *y*-intercept of the line with the equation 3y - 2x + 4 = 0.

3y - 2x + 4 = 0 3y = 2x - 4	1 Make <i>y</i> the subject of the equation.
$y = \frac{2}{3}x - \frac{4}{3}$	2 Divide all the terms by three to get the equation in the form $y =$
Gradient = $m = \frac{2}{3}$	3 In the form $y = mx + c$, the gradient is <i>m</i> and the <i>y</i> -intercept is <i>c</i> .
y-intercept = $c = -\frac{4}{3}$	

m = 3 y = 3x + c	1 Substitute the gradient given in the question into the equation of a straight line $y = mx + c$.
$13 = 3 \times 5 + c$	2 Substitute the coordinates $x = 5$ and $y = 13$ into the equation.
13 = 15 + c c = -2	3 Simplify and solve the equation.
c = -2 y = 3x - 2	4 Substitute $c = -2$ into the equation y = 3x + c

Example 3 Find the equation of the line which passes through the point (5, 13) and has gradient 3.

Example 4 Find the equation of the line passing through the points with coordinates (2, 4) and (8, 7).

$x_1 = 2, x_2 = 8, y_1 = 4 \text{ and } y_2 = 7$	1 Substitute the coordinates into the		
$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - 4}{8 - 2} = \frac{3}{6} = \frac{1}{2}$	equation $m = \frac{y_2 - y_1}{x_2 - x_1}$ to work out		
2 1	the gradient of the line.		
1	2 Substitute the gradient into the		
$y = \frac{1}{2}x + c$	equation of a straight line		
Σ	y = mx + c.		
$4 = \frac{1}{2} \times 2 + c$	3 Substitute the coordinates of either point into the equation.		
<i>c</i> = 3	4 Simplify and solve the equation.		
$y = \frac{1}{2}x + 3$	5 Substitute $c = 3$ into the equation $y = \frac{1}{2}x + c$		

Practice

			_		(
1	Find the gradient and the <i>y</i> -intercept of the following equations.				Hint
	a	y = 3x + 5	b	$y = -\frac{1}{2}x - 7$	Rearrange the equations to the form $y = mx + c$
	с	2y = 4x - 3	d	x + y = 5	

3 Find, in the form ax + by + c = 0 where *a*, *b* and *c* are integers, an equation for each of the lines with the following gradients and *y*-intercepts.

a gradient $-\frac{1}{2}$, y-intercept -7 **b** gradient 2, y-intercept 0

- 5 Write an equation for the line which passes through the point (6, 3) and has gradient $-\frac{2}{3}$
- 6 Write an equation for the line passing through each of the following pairs of points.
 a (4, 5), (10, 17)
 b (0, 6), (-4, 8)