Skip to main content Skip to navigation

Analytical Sciences and Instrumentation (MSc) (2022 Entry)

About this ... course header
Course overview header

Delivered by internationally leading experts from the Departments of Chemistry, Physics, Statistics, Engineering and Life Sciences as well as from our industrial partners, this Royal Society of Chemistry accredited degree course enables you to gain hands-on practical experience with a range of equipment relevant to wider analytical sciences. This will enable you to work in any modern laboratory and give you an excellent opportunity to start your career in the field of analytical sciences.

You will have the opportunity to undertake a cutting-edge project with a world-leading research group. When you graduate, you will be positioned to take up employment in research/development roles within a number of sectors, or to progress to PhD study.

You can find out more about the Department of Chemistry by joining our Webinars.

Dr Nikola Chmel is the head of the MSc in Analytical Sciences and Instrumentation. Please contact chem-pgt at warwick dot ac dot uk with any Chemistry specific department questions, where course directors Dr Nikola Chmel and Dr Remzi Becer are available to discuss any queries.


Entry requirements header Entry requirements header

2:ii undergraduate degree (or equivalent) in a related subject.


English Language requirements header
  • Band A
  • IELTS overall score of 6.5, minimum component scores not below 6.0.

International requirements header
Additional requirements header

There are no additional entry requirements for this course.

Module header

Statistics for Data Analysis

The aim of this module is to give students a basic understanding of the statistical methods appropriate to data analysis in analytical science, and to provide guidance on some statistical tools for more advanced study. Topics include: basic probability; error analysis and calibration; summarising data and testing simple hypotheses; statistical computing (software and practice, including simple graphics); experimental design and analysis of variance; sampling methods and quality control; simple analysis of multivariate data. Each session will combine lecture and data analysis workshop. At the end of the course the student should be able to appreciate the added value that statistical analysis can bring to research to perform basic statistical analyses of simple data sets using statistical software to design simple experiments.

Techniques in Quantitative and Qualitative Analysis

This module will introduce practical fundamentals of qualitative and quantitative analysis. We will consider practical aspects of sampling and calibration techniques. The laboratory sessions will include quantitative analyses using volumetry, gravimetry, UV/Visible spectroscopy, and state-of-the art inductively coupled plasma spectroscopy (ICP) techniques (OES and MS).

Frontier Techniques in Analytical Science

This module introduces students from a range of different backgrounds to advanced analytical techniques. To ensure students appreciate the links between need for measurement, instrumentation design, data quality and data analysis.

Electrochemistry and Sensors

This module provides a grounding in the fundamentals of electrochemistry, electroanalytical techniques and sensor technology. The module encompasses potentiometric methods, voltammetric/amperometric techniques, microfluidic/flow devices. Electrochemistry aspects draw on Warwick’s major strengths in this area and include developments in ion selective electrodes, electrode kinetics and mass transport and key techniques, such as linear sweep and cyclic voltammetry, hydrodynamic electrodes, stripping voltammetry, ultramicroelectrodes and array devices. Lectures and problems classes are supplemented by laboratory sessions which provide students with practical hands-on experience.

Mass Spectrometry

This module introduces the student to the many facets of modern mass spectrometry. Emphasis is placed both on the interpretation of spectra and also on instrumental methods, covering modern methods of ionisation (including ESI and MALDI) and mass analysis (including orthogonal TOF and FT-ICR) and the use of linked methods such as GC/MS, HPLC/MS and tandem mass spectrometry. Practical sessions include practice at interpretation and experiments using various mass spectrometric techniques.

Chromatography and Separation Science

During this interdisciplinary module students will learn about theory and practice of different types of chromatography and their application in real-world scenarios. They will develop the skills necessary to decide how to decide which methods are the most appropriate for a given separation problem - whether for analysis or purification of, for example, synthetic polymers, biomolecules, or biopharmaceuticals. The module includes workshops on data interpretation and lab sessions providing students with hands on experience with several different chromatographic methods.

Magnetic Resonance

Nuclear magnetic resonance (NMR) in both solution and the solid state as well as electron paramagnetic resonance (EPR) will be described. The course will cover the underlying theory of the experiments as well as practical aspects of recording spectra and their interpretation. The importance of magnetic resonance across science, in, e.g., organic chemistry, pharmaceuticals and proteins, will be demonstrated.

Microscopy and Imaging

This module provides a foundation in the principles and applications of microscopy, starting with basics of light microscopy and progressing to state of the art confocal microscopy, electron microscopy and scanned probe microscopy. The latter includes atomic force microscopy and electrochemical imaging techniques for which Warwick is particularly well-known. The module includes workshops on image analysis and seminars that cover the most recent developments in the field.

Transferable Skills

Team Research Project: Real World Analysis

Research questions in academia and industry generally require the development and integration of several analytical techniques. The aim of this module is to make students aware of these requirements. It is the culmination of the taught part of the course, and constitutes the ideal preparation for the research project and future careers in analytical laboratories. The practical work for this module involves team work to solve real analytical problems using multiple techniques and professional data analysis. Literature work will be required as the basis of method development.

20-week individual research project

The module is designed to develop student research skills, through an extended project in an area of chosen discipline. Students will become aware of the elements of research, including appraising the literature, designing novel experiments (practical and/or computational), assessing results and drawing conclusions that they will be able to set against the current field. This module will allow students to be original in their application of knowledge to the solution of new, research-led problems.


Teaching header

The first 25 weeks are lecture-based, providing you with a diverse toolbox in analytical polymer science to complete a successful 20-week research project.


Class size header

Class sizes can range between 5 to 40 students, dependent on modules: some of which are shared across programmes.


Contact hours header

You should expect to attend around 10-25 hours of lectures and workshops per week and spend approximately six hours on supervised practical (mainly laboratory) work. For each one-hour lecture, you should expect to put in additional time for private study.


Assessment header

Examined component (%): Taught modules are generally 50%.

Assessed by coursework component (%): Taught modules are generally 50%; research projects are assessed by a variety of assessment methods.


Reading lists

Most departments have reading lists available through Warwick Library. If you would like to view reading lists for the current cohort of students you can visit our Warwick Library web page.


Your timetable

Your personalised timetable will be complete when you are registered for all modules, compulsory and optional, and you have been allocated to your lectures, seminars and other small group classes. Your compulsory modules will be registered for you when you join us.

Department content block about careers
Department content block about department
Fees header
Funding header
Next steps standard content block
How to apply
Visit us