Mathematics and Physics (BSc) (Course full)
Please note: this course is full for 2019 entry.
MATHEMATICS AND PHYSICS (BSc)
Fulltime 2019 entry, A*AA, IB 38
Mathematics and Physics are complementary
disciplines and a natural combination for university study. Mathematicians and Physicists often address common questions and challenges, resulting in exciting discoveries at the intersection of the two subjects.
Ideas developed in particle physics have led to advances in geometry; learning from chaos theory is being applied increasingly in the modelling of complex physical systems such as the atmosphere and lasers. You’ll be jointly taught by the Institute of Mathematics and Department of Physics, both of which have a reputation for excellence. In addition to core modules, you’ll have flexibility in your second and third years to choose modules to explore areas of interest in more depth.
You may also choose to develop breadth of learning by selecting from approved modules outside the two departments, such as interdisciplinary module The Challenge of Climate Change or learning a modern language. Download our course booklet.
The Warwick joint degree course is among the best established in the country and the course includes a number of modules from both contributing departments designed specifically for joint degree students.
In the first year you take essential (core) modules in both mathematics and physics. You also take at least one additional module chosen from a list of options. At the end of the first year it is possible to change to either of the single honours courses, providing you satisfy certain requirements in the end of year examinations.
In the second and third years, there is considerable freedom to choose modules. By then you will have a good idea of your main interests and be well placed to decide which areas of mathematics and physics to study in greater depth.
Class size
Lecture size will naturally vary from module to module. The first year core modules may have up to 350 students in a session, whilst the more specialist modules in the later years will have fewer than 100. The core physics modules in the first year are supported by weekly classes, at which you and your fellow students meet in small groups with a member of the research staff or a postgraduate student. Tutorials with your personal tutor and weekly supervision sessions are normally with a group of 5 students.
Contact hours
You should expect to attend around 14 lectures a week, supported by weekly supervision meetings, problems classes and personal tutorials. For each 1 hour lecture, you should expect to put in a further 12 hours of private study.
Most lecture modules are assessed by 15% coursework and 85% final examinations or by 100% exam, with almost all exams taken in the third term. Essays and projects, such as the finalyear project, are assessed by coursework and an oral presentation.
The weighting for each year's contribution to your final mark is 10:30:60 for the BSc courses.
We support student mobility through study abroad programmes. BSc students have the opportunity to apply for an intercalated year abroad at one of our partner universities.
The Study Abroad Team based in the Office for Global Engagement offers support for these activities. The Department's Study Abroad Coordinator can provide more specific information and assistance.
All students can apply for research vacation projects  small research projects supervised by a member of academic staff. BSc students can register for the Intercalated Year Scheme, which involves spending a year in scientific employment or UK industry between their second and final year.
Student blogs
"From the best places to eat on campus, to advice about courses  our student bloggers have all of the inside information about life at Warwick."
Check out our latest blogs
A level: A*AA, to include A* in Mathematics, A in Further Mathematics and A in Physics.
For students not taking A Level Further Mathematics, the typical offer is A* (Mathematics) A* (Physics) and A in any third subject at A Level

IB: 38 to include 7 in Higher Level Mathematics and 6 in Higher Level Physics
You will also need to meet our English Language requirements.
Contextual data and differential offers: Warwick may make differential offers to students in a number of circumstances. These include students participating in the Realising Opportunities programme, or who meet two of the contextual data criteria. Differential offers will be one or two grades below Warwick’s standard offer (to a minimum of BBB).
 Access Courses: Access to HE Diploma (QAArecognised) including appropriate subjects with distinction grades in level 3 units, and Mathematics and Physics A levels or equivalent.
 Warwick International Foundation Programme (IFP) All students who successfully complete the Warwick IFP and apply to Warwick through UCAS will receive a guaranteed conditional offer for a related undergraduate programme (selected courses only). For full details of standard offers and conditions visit the IFP page.
 We welcome applications from students with other internationally recognised qualifications. For more information please visit the international entry requirements page.

Further Information

Taking a gap year Applications for deferred entry welcomed.
Interviews We do not typically interview applicants. Offers are made based on your UCAS form which includes predicted and actual grades, your personal statement and school reference.
Open Days All students who have been offered a place are invited to visit. Find out more about our main University Open Days and other opportunities to visit us. We want to make our admissions process as straightforward as possible, so find out more about how to make an application, alongside the latest entry requirements.
Year 1
Mathematical Analysis
Analysis is the rigorous study of calculus. In this module there will be considerable emphasis throughout on the need to argue with much greater precision and care than you had to at school. With the support of your fellow students, lecturers and other helpers, you will be encouraged to move on from the situation where the teacher shows you how to solve each kind of problem, to the point where you can develop your own methods for solving problems. By the end of the year you will be able to answer interesting questions like, what do we mean by `infinity'?
Sets and Numbers
It is in its proofs that the strength and richness of mathematics is to be found. University mathematics introduces progressively more abstract ideas and structures, and demands more in the way of proof, until most of your time is occupied with understanding proofs and creating your own. Learning to deal with abstraction and with proofs takes time. This module will bridge the gap between school and university mathematics, taking you from concrete techniques where the emphasis is on calculation, and gradually moving towards abstraction and proof.
Linear Algebra
Linear algebra addresses simultaneous linear equations. You will learn about the properties of vector space, linear mapping and its representation by a matrix. Applications include solving simultaneous linear equations, properties of vectors and matrices, properties of determinants and ways of calculating them. You will learn to define and calculate eigenvalues and eigenvectors of a linear map or matrix. You will have an understanding of matrices and vector spaces for later modules to build on.
Differential Equations
Can you predict the trajectory of a tennis ball? In this module you cover the basic theory of ordinary differential equations (ODEs), the cornerstone of all applied mathematics. ODE theory proves invaluable in branches of pure mathematics, such as geometry and topology. You will be introduced to simple differential and difference equations and methods for their solution. You will cover firstorder equations, linear secondorder equations and coupled firstorder linear systems with constant coefficients, and solutions to differential equations with oneand twodimensional systems. We will discuss why in three dimensions we see new phenomena, and have a first glimpse of chaotic solutions.
Physics Foundations
You will look at dimensional analysis, matter and waves. Often the qualitative features of systems can be understood (at least partially) by thinking about which quantities in a problem are allowed to depend on each other on dimensional grounds. Thermodynamics is the study of heat transfers and how they can lead to useful work. Even though the results are universal, the simplest way to introduce this topic to you is via the ideal gas, whose properties are discussed and derived in some detail. You will also cover waves. Waves are timedependent variations about some timeindependent (often equilibrium) state. You will revise the relation between the wavelength, frequency and velocity and the definition of the amplitude and phase of a wave.
Electricity and Magnetism
You will largely be concerned with the great developments in electricity and magnetism, which took place during the nineteenth century. The origins and properties of electric and magnetic fields in free space, and in materials, are tested in some detail and all the basic levels up to, but not including, Maxwell's equations are considered. In addition the module deals with both dc and ac circuit theory including the use of complex impedance. You will be introduced to the properties of electrostatic and magnetic fields, and their interaction with dielectrics, conductors and magnetic materials.
Classical Mechanics and Relativity
You will study Newtonian mechanics emphasizing the conservation laws inherent in the theory. These have a wider domain of applicability than classical mechanics (for example they also apply in quantum mechanics). You will also look at the classical mechanics of oscillations and of rotating bodies. It then explains why the failure to find the ether was such an important experimental result and how Einstein constructed his theory of special relativity. You will cover some of the consequences of the theory for classical mechanics and some of the predictions it makes, including: the relation between mass and energy, lengthcontraction, timedilation and the twin paradox.
Quantum Phenomena
This module begins by showing you how classical physics is unable to explain some of the properties of light, electrons and atoms. (Theories in physics, which make no reference to quantum theory, are usually called classical theories.) You will then deal with some of the key contributions to the development of quantum physics including those of: Planck, who first suggested that the energy in a light wave comes in discrete units or 'quanta'; Einstein, whose theory of the photoelectric effect implied a 'duality' between particles and waves; Bohr, who suggested a theory of the atom that assumed that not only energy, but also angular momentum, was quantised; and Schrödinger who wrote down the first waveequations to describe matter.
Physics Programming Workshop
You will be introduced to the Python programming language in this module. It is quick to learn and encourages good programming style. Python is an interpreted language, which makes it flexible and easy to share. It allows easy interfacing with modules, which have been compiled from C or Fortran sources. It is widely used throughout physics and there are many downloadable freetouser codes available. You will also look at the visualisation of data. You will be introduced to scientific programming with the help of the Python programming language, a language widely used by physicists.
Year 2
Analysis III
In this module, you will learn methods to prove that every continuous function can be integrated, and prove the fundamental theorem of calculus. You will discuss how integration can be applied to define some of the basic functions of analysis and to establish their fundamental properties. You will develop a working knowledge of the construction of the integral of regulated functions, study the continuity, differentiability and integral of the limit of a uniformly convergent sequence of functions, and use the concept of norm in a vector space to discuss convergence and continuity there. This will equip you with a working knowledge of the construction of the integral of regulated function.
Methods of Mathematical Physics
On this module, you will learn the mathematical techniques required by second, third and fourthyear physics students. Starting with the theory of Fourier transforms and the Dirac delta function, you will learn why diffraction patterns in the farfield limit are the Fourier transforms of the ‘diffracting’ object before moving to diffraction more generally, including in the light of the convolution theorem. You will also be introduced to Lagrange multipliers, coordinate transformations and Cartesian tensors, which will be illustrated with examples of their use in physics.
Multivariable Calculus
There are many situations in pure and applied mathematics where the continuity and differentiability of a function f: R^{n}→ R^{m} has to be considered. Yet, partial derivatives, while easy to calculate, are not robust enough to yield a satisfactory differentiation theory. In this module you will establish the basic properties of this derivative, which will generalise those of singlevariable calculus. The module will review line and surface integrals, introduce div, grad and curl and establish the divergence theorem.
Partial Differential Equations
The theory of partial differential equations (PDE) is important in both pure and applied mathematics. Since the pioneering work on surfaces and manifolds by Gauss and Riemann, PDEs have been at the centre of much of mathematics. PDEs are also used to describe many phenomena from the natural sciences (such as fluid flow and electromagnetism) and social sciences (such as financial markets). In this module you will learn how to classify the the most important partial differential equations into three types: elliptic, parabolic, and hyperbolic. You will study the role of boundary conditions and look at various methods for solving PDEs.
Variational Principles
Electromagnetic Theory and Optics
You will develop the ideas of first year electricity and magnetism into Maxwell's theory of electromagnetism. Maxwell's equations pulled the various laws of electricity and magnetism (Faraday's law, Ampere's law, Lenz's law, Gauss's law) into one unified and elegant theory. The module shows you that Maxwell's equations in free space have timedependent solutions, which turn out to be the familiar electromagnetic waves (light, radio waves, Xrays, etc.), and studies their behaviour at material boundaries (Fresnel Equations). You will also cover the basics of optical instruments and light sources.
Physics of Fluids
The field of fluids is one of the richest and most easily appreciated in physics. Tidal waves, cloud formation and the weather generally are some of the more spectacular phenomena encountered in fluids. In this module you will establish the basic equations of motion for a fluid  the NavierStokes equations  and show that in many cases they can yield simple and intuitively appealing explanations of fluid flows. You will be concentrating on incompressible fluids.
Quantum Mechanics and its Applications
In the first part of this module you will use ideas, introduced in the first year module, to explore atomic structure. You will discuss the timeindependent and the timedependent Schrödinger equations for spherically symmetric and harmonic potentials, angular momentum and hydrogenic atoms. The second half of the module looks at manyparticle systems and aspects of the Standard Model of particle physics. It introduces the quantum mechanics of free fermions and discussing how it accounts for the conductivity and heat capacity of metals and the state of electrons in white dwarf stars.
Thermal Physics II
Any macroscopic object we meet contains a large number of particles, each of which moves according to the laws of mechanics (which can be classical or quantum). Yet, we can often ignore the details of this microscopic motion and use a few average quantities such as temperature and pressure to describe and predict the behaviour of the object. Why we can do this, when we can do this and how to do it are the subject of this module. The most important idea in the field is due to Boltzmann, who identified the connection between entropy and disorder. The module shows you how the structure of equilibrium thermodynamics follows from Boltzmann's definition of the entropy and shows you how, in principle, any observable equilibrium quantity can be computed.
Year 3
Communicating Science
Employers look for many things in wouldbe employees. Sometimes they will be looking for specific knowledge, but often they will be more interested in general skills, frequently referred to as transferable skills. One such transferable skill is the ability to communicate effectively, both orally and in writing. Over the past two years you may have had experience in writing for an academic audience in the form of your laboratory reports. The aim of this module is to introduce you to the different approaches required to write for other audiences. This module will provide you with experience in presenting technical material in different formats to a variety of audiences.
Selection of optional modules that current students are studying
 Probability
 Programming for Scientists (30L)
 Geometry
 Groups and Rings
 Introduction to Systems Biology
 Galaxies
 Astrophysics
 Physics in Medicine
 Experimental Particle Physics
 Challenges of Climate Change
 Hamiltonian Mechanics
 Fluid Dynamics
 Electrodynamics
Destinations
They include:
 Intellectual Property Office
 Public Eye Communications
 RealityMine
 Longview Economics
Job titles
 Actuarial Analyst
 Application Developer
 Economics And Markets Analyst
 Newspaper and Magazine Manager
 Research and Development Engineer
"My goal is to pursue a challenging, rewarding, high impact career."
"I joined Warwick because it was progressive, with a very inclusive community. Mathematics offered a wider range of modules than other universities, with opportunities to study across many disciplines.
My advice for any potential applicants would be to exploit the fact that Maths is the cornerstone for half of the disciplines across the University. You should also engage with people outside the Maths department and gain important skills in the various societies on offer.
I knew I ultimately wanted to work in the public or charity sector, and the careers department gave me support in determining the necessary skills. As soon as I graduated, I felt prepared to take my place on the Civil Service Fast Stream."Alexander Brush  Civil Service Fast Streamer (Finance)
Studied 'Mathematics'  Graduated 2016
Entry Requirements
A level: A*AA to include A in Mathematics (or Further Mathematics) and A in Physics
For students not taking A Level Further Mathematics, the typical offer is A* (Mathematics) A* (Physics) and A in any third subject at A Level
IB: 38 to include 7 in Higher Level Mathematics and 6 in Higher Level Physics
UCAS Code
GF13
Department
Physics
Award
Degree of Bachelor of Science (BSc)
Duration
3 years Full Time
Start date
24 September 2019
Location of study
University of Warwick, Coventry
Tuition fees
Find out more about fees and funding
Other course costs
There may be costs associated with other items or services such as academic texts, course notes, and trips associated with your course.
For further information on the typical additional costs please see the Additional Costs page.
This information is applicable for 2019 entry.
Given the interval between the publication of courses and enrolment, some of the information may change. It is important to check our website before you apply. Please read our terms and conditions to find out more.