
Topics in Experimental Economics

Taha Moavhedi

University of Warwick

E-mail: taha.movahedi@warwick.ac.uk

Elicitation Techniques

Topic 2

Elicitation Tech-

Scoring Rules

niques

Mood Induction

Time and Risk

- ► Eliciting the utility function under PT.
- ► Eliciting loss aversion under PT.
- ▶ Eliciting the probability weighting function under PT.
- ► Readings: Wakker & Deneffe (1996)*, Abdellaoui (2000)*, Abdellaoui et al. (2007)*, Abdellaoui et al. (2008)*
- ▶ Application: Bleichrodt & Pinto (2000)*, (Dhami 2016, pp 213-278)*

Elicitation Techniques: Why

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- ► Allais (1953) challenged the descriptive validity of expected utility theory.
- ➤ Several generalizations of expected utility theory, known as non-expected utility theories, were proposed in the literature (cf. Starmer, 2000).
- ▶ Among these generalizations, prospect theory Tversky & Kahneman (1992) accommodate a large set of behavioral biases.

Elicitation Techniques: Why

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- ▶ Allais (1953) challenged the descriptive validity of expected utility theory.
- Several generalizations of expected utility theory, known as non-expected utility theories, were proposed in the literature (cf. Starmer, 2000).
- ► Among these generalizations, prospect theory Tversky & Kahneman (1992) accommodate a large set of behavioral biases.
 - ► Two key reasons for deviation from expected utility:
 - Loss aversion
 People interpret outcomes as gains and losses relative to a reference point,
 They are more sensitive to losses than to absolutely commensurate gains.
 - Non-linear probabilities
 A probability weighting function that is concave in low probabilities, and is convex in medium to high probabilities.

Behavioural Eco-

Elicitation Techniques: Examples

Topic 2

Elicitation Tech-

Scoring Rules

niques

Mood Induction

Time and Risk

- Loss aversion explains:
 - the equity premium puzzle
 - asymmetric price elasticities
 - downward-sloping labor supply
 - myopic loss aversion people may evaluate return on lotteries over very short time horizons while the actual returns are long term.

Elicitation Techniques: Examples

Topic 2

Elicitation Tech-

niques

Scoring Rules

Mood Induction

Time and Risk

- Loss aversion explains:
 - the equity premium puzzle
 - asymmetric price elasticities
 - downward-sloping labor supply
 - myopic loss aversion people may evaluate return on lotteries over very short time horizons while the actual returns are long term.
- Non-linear probabilities explains:
 - extreme events (or tail events in finance) are more salient
 - positively (negatively) skewed returns portfolios/assets may be more attractive to investors
 - the equity premium puzzle
 - purchase of lotteries and insurances
 - panic buying

Elicitation Techniques: Prospect Theory

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- ▶ In prospect theory (PT), measures utilities in terms of gains and losses.
- ▶ The value function is normalized to zero at a reference point
- ► The kink in the value function reflects loss aversion.
- PT's value function is a ratio scale:it can be normalized for one outcome other than the reference point.
- Methods for eliciting PT's value function are invaluable tools in decision analysis.

Loss Aversion, A Definition

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

Definition

Kahneman & Tversky (1979): Let \prec be a binary preference relation over lotteries. An individual is loss averse if $(y, 0.5; -y, 0.5) \prec (z, 0.5; -z, 0.5)$ where $y > z \ge 0$

Other studies define loss aversion based on the utility function (and not the probability weighting function).

Reaction to losses in terms of utility

Topic 2

Elicitation Tech-

niques

Scoring Rules

Mood Induction

Time and Risk

Reaction to losses in terms of utility

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- ► Reference dependence: the value function is defined on deviations from a reference point (origin)
 - Value function is concave for gains (implying risk aversion) and convex for losses (risk seeking)

Reaction to losses in terms of utility

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- ► Reference dependence: the value function is defined on deviations from a reference point (origin)
 - Value function is concave for gains (implying risk aversion) and convex for losses (risk seeking)
- **Loss aversion:** the value function is steeper for losses than for gains, i.e., $\lambda > 1$

Reaction to losses in terms of utility

Topic 2

Elicitation Techniques

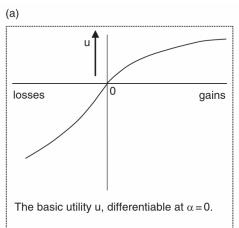
Scoring Rules

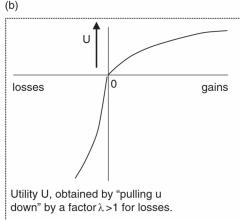
Mood Induction

Time and Risk

- ► Reference dependence: the value function is defined on deviations from a reference point (origin)
 - Value function is concave for gains (implying risk aversion) and convex for losses (risk seeking)
- **Loss aversion:** the value function is steeper for losses than for gains, i.e., $\lambda > 1$
- Diminishing sensitivity: the effect of the change diminishes with distance to the reference point.

Reaction to losses in terms of utility


Topic 2


Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

Reaction to losses in terms of utility

Topic 2

Elicitation Tech-

niques

Scoring Rules

Mood Induction

Time and Risk

Reaction to losses in terms of utility

Topic 2

Elicitation Tech-

niques

Scoring Rules

Mood Induction

Time and Risk

References

 \triangleright Parametric for of V, a power utility function:

$$V(\alpha) = \begin{cases} \alpha^{\theta} & \alpha > 0 \end{cases}$$

Reaction to losses in terms of utility

Topic 2

Elicitation Tech-

niques Scoring

Rules

Mood Induction

Time and Risk

References

 \triangleright Parametric for of V, a power utility function:

$$V(\alpha) = \begin{cases} \alpha^{\theta} & \alpha > 0 \\ 0 & 0 \end{cases}$$

Reaction to losses in terms of utility

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

Parametric for of *V*, a power utility function:

$$V(\alpha) = \begin{cases} \alpha^{\theta} & \alpha > 0 \\ 0 & 0 \\ -\lambda(-\alpha)^{\theta'} & \alpha < 0 \end{cases}$$

Reaction to losses in terms of utility

Topic 2

Elicitation Tech-

niques

Scoring Rules

Mood Induction

Time and Risk

References

 \triangleright Parametric for of V, a power utility function:

$$V(\alpha) = \begin{cases} \alpha^{\theta} & \alpha > 0 \\ 0 & 0 \\ -\lambda(-\alpha)^{\theta'} & \alpha < 0 \end{cases}$$
 (1)

Tversky & Kahneman (1992) find that: $\theta' = \theta = 0.88$, $\lambda = 2.25$

Loss Aversion

Topic 2				
Elicitation				
Tech-				
niques				
Scoring				
Rules				
Mood				
Induction				
Time and				
Risk				
References				

Study	Index	Estimate
Fishburn & Kochenberger (1979)*	$\frac{v'(-x)}{v'(x)}$	4.8
Tversky & Kahneman (1992)	$-\frac{v(-1)}{v(1)}$	2.25
Bleichrodt et al. (2001)*	$\frac{v(-x)}{v(x)}$	2.17, 3.06
Schmidt & Traub (2002)*	$\frac{v'(-x)}{v'(x)}$	1.43
Pennings & Smidts (2003)*	$\frac{v'(-x)}{v'(x)}$	1.81
Booij et al. (2010)*	$\frac{v_{\uparrow}(-x)}{v_{\downarrow}(x)}$	1.79, 1.74

Loss Aversion

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

Study	Index	Estimate
Abdellaoui et al. (2007)*	$-\frac{v(-x)}{v(x)}$	2.04
x > 0, y < 0	$\frac{\min(v(-y)/y)}{\min(v(-x)/x)}$	1.07
	$\frac{v'(-x)}{v'(x)}$	1.71
	$\frac{\min v(-y)}{\min v(-x)}$	0.74
	$\frac{x_{0.015}}{y_{0.015}}$	8.24

Optional Readings

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

Further readings on elicitation techniques*:

Köbberling & Wakker (2005), Gächter et al. (2021), Abdellaoui et al. (2016),

Belief Elicitation Techniques

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

- Scoring rule.
- ► Introspective Judgment:

Example: What do you think is the percent chance that even *E* occurs? Please reply a specific value or a range of values, as you see fit.

Belief Elicitation Techniques

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

- Scoring rule.
- Introspective Judgment:

Example: What do you think is the percent chance that even *E* occurs? Please reply a specific value or a range of values, as you see fit.

1. Matching probabilities:

Example: if event E happens the outcome is x, else 0; a risky prospect:

$$x, E; 0, E^c \sim x, p; 0, 1 - p$$

Belief Elicitation Techniques

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

- Scoring rule.
- Introspective Judgment:

Example: What do you think is the percent chance that even *E* occurs? Please reply a specific value or a range of values, as you see fit.

1. Matching probabilities:

Example: if event E happens the outcome is x, else 0; a risky prospect:

$$x, E; 0, E^c \sim x, p; 0, 1 - p$$

2. Certainty Equivalence:

Example: if event E happens the outcome is x, else 0; a certain amount:

$$x, E; 0, E^c \sim x_c$$

Why Scoring Rules

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- ▶ Scoring rules are used for those unobservable variables, such as beliefs.
- ▶ Why Eliciting Beliefs at all?
- ▶ One short answer: providing foundations for behavioural models of learning.

Why Scoring Rules

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- ▶ Scoring rules are used for those unobservable variables, such as beliefs.
- Why Eliciting Beliefs at all?
- One short answer: providing foundations for behavioural models of learning.
- ► Equilibrium analysis + the time path to the equilibrium: the temporal learning behaviour of economic agent.
- However the big question is where these preferences are coming from? Why do we observe prosocial behaviour such as altruism? If selffishness has a higher fitness, how can altruism survive? How culture transmitted across generations?

Scoring Rules

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- ▶ Proper scoring rules are used for those unobservable variables, such as beliefs
- ► There many different scoring rules.
- Proper Scoring Rules: a scoring rule which is a dominant strategy for decision-makers to reveal beliefs truthfully.

Proper Scoring Rules

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

► There many different scoring rules.

	$s_1(y)$	$s_2(y)$
Quadratic	$1 - (1 - y)^2$	$1 - y^2$
Generalised binary	$a - b(1 - y)^2$	$c - by^2$
Logarithmic (Toda, 1963)	$-\log(y)$	$-\log(1-y)$
Spherical (Roby, 1964)	$\frac{y}{(y^2 + (1-y)^2)^{0.5}}$	$\frac{1-y}{(y^2+(1-y)^2)^{0.5}}$
Power quadratic (Selten, 1998)	$ay^{a-1} - (a-1)(y^a + (1-y)^a)$	$a(1-y)^{a-1} - (a-1)(y^{a} + (1-y)^{a})$

- ► However, they make the assumptions that subjects are risk neutral expected utility maximising.
- ► Generalisation to Non-Expected utility (Offerman et al. 2009).

Does Properness matter?

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

▶ Properness is necessary for truth revelation.

Does Properness matter?

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- Properness is necessary for truth revelation.
- Subjects may be willing to report the true beliefs anyway.
- ▶ They may not be able to tell the difference between proper or improper rules.
- ► If truth-telling is a cognitive low-cost thing to do, properness seems less crucial.

Does Properness matter?

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- Properness is necessary for truth revelation.
- Subjects may be willing to report the true beliefs anyway.
- ▶ They may not be able to tell the difference between proper or improper rules.
- ► If truth-telling is a cognitive low-cost thing to do, properness seems less crucial.
- ► A flat fee may work just as well (Sonnemans & Offerman 2001)*.
- ► For a comprehensive review of incentived belief elicitation read Schlag et al. (2015)*

Consistency

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

► PSR may cause bigger influence on behaviour, specially in strategic decision making i.e., games.

Consistency

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- ► PSR may cause bigger influence on behaviour, specially in strategic decision making i.e., games.
- ► Subjects use their stated beliefs as the basis of their choices? (Nyarko & Schotter 2002)*.
- ▶ Subjects best-response to their stated beliefs? (Blanco et al. 2014)*.
- ► Constant average beliefs over two elicitation methods? (Costa-Gomes & Weizsäcker 2008)*.

Consistency

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- ► PSR may cause bigger influence on behaviour, specially in strategic decision making i.e., games.
- ➤ Subjects use their stated beliefs as the basis of their choices? (Nyarko & Schotter 2002)*.
- ▶ Subjects best-response to their stated beliefs? (Blanco et al. 2014)*.
- ► Constant average beliefs over two elicitation methods? (Costa-Gomes & Weizsäcker 2008)*.
- ► Elicitation of beliefs make subjects think harder.

Belief Elicitation Techniques, which one?

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

Belief Elicitation Techniques, which one?

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

► Comparing belief elicitation techniques: Trautmann & van de Kuilen (2015)*.

They find no significant differences between elicitation techniques (in terms of additive beliefs).

Incentivised techniques perform slightly better than non-incentivised ones.

Scoring Rules

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

- ▶ Beliefs about *n* possible events i = 1, 2, ..., n
- ► Reported beliefs $r = (r_1, r_2, ..., r_n)$
- Scoring functions $S = (S_1, S_2, \dots, S_n)$
- ► The most commonly used scoring rule: Quadratic Scoring Rule (QSR) (Brier, 1950)*.
- ► The score when event *r* occurs:

$$S_i(r) = a - b \sum_{k=1}^{n} (I_k - r_k)^2$$

where a, b > 0 and $I_k = 1$ if event k is realised and 0 otherwise.

Quadratic Scoring Rule

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

Readings Offerman et al. (2009)

▶ We focus on eliciting probability weighting function for objective probabilities in Offerman et al. (2009)

Quadratic Scoring Rule

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

Readings Offerman et al. (2009)

- ▶ We focus on eliciting probability weighting function for objective probabilities in Offerman et al. (2009)
- Quadratic Scoring Rule (Offerman et al. 2009) is incentive compatible applicable to non-expected utility theories

Quadratic Scoring Rule

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

Readings Offerman et al. (2009)

- ▶ We focus on eliciting probability weighting function for objective probabilities in Offerman et al. (2009)
- Quadratic Scoring Rule (Offerman et al. 2009) is incentive compatible applicable to non-expected utility theories
- ► A QSR prospect is given by:

$$p$$
, $\underbrace{(a-b(1-r)^2)}_{\text{score if true}}$ or $(1-p)$, $\underbrace{(a-cr^2)}_{\text{score if not true}}$

Quadratic Scoring Rule for Eliciting Beliefs

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

Consider the following QSR prospect, $r \in [0, 1]$, for simplicity a = 1, b = 1, c = 1

$$p$$
, $\underbrace{(1-(1-r)^2)}_{\text{score if true}}$ or $(1-p)$, $\underbrace{(1-r^2)}_{\text{score if not true}}$

Quadratic Scoring Rule for Eliciting Beliefs

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

Consider the following QSR prospect, $r \in [0, 1]$, for simplicity a = 1, b = 1, c = 1

$$p$$
, $\underbrace{(1-(1-r)^2)}_{\text{score if true}}$ or $(1-p)$, $\underbrace{(1-r^2)}_{\text{score if not true}}$

Evaluating the prospect

$$\max_{r} w(p) u(1 - (1 - r)^{2}) + w(1 - p) u(1 - r^{2})$$

Quadratic Scoring Rule for Eliciting Beliefs

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

Consider the following QSR prospect, $r \in [0, 1]$, for simplicity a = 1, b = 1, c = 1

$$p$$
, $\underbrace{(1-(1-r)^2)}_{\text{score if true}}$ or $(1-p)$, $\underbrace{(1-r^2)}_{\text{score if not true}}$

Evaluating the prospect

$$\max_{r} w(p) u(1 - (1 - r)^{2}) + w(1 - p) u(1 - r^{2})$$

$$\iff r = \frac{w(p)}{w(p) + (1 - w(p)) \frac{u'(1 - r^{2})}{u'(1 - (1 - r)^{2})}}$$

Quadratic Scoring Rule for Eliciting Beliefs

Consider the following QSR prospect, $r \in [0, 1]$, for simplicity a = 1, b = 1, c = 1

$$p$$
, $\underbrace{(1-(1-r)^2)}_{\text{score if true}}$ or $(1-p)$, $\underbrace{(1-r^2)}_{\text{score if not true}}$

Evaluating the prospect

$$\max_{r} w(p) u(1 - (1 - r)^{2}) + w(1 - p) u(1 - r^{2})$$

$$\iff r = \frac{w(p)}{w(p) + (1 - w(p)) \frac{u'(1 - r^{2})}{u'(1 - (1 - r)^{2})}}$$

Time and

Mood

Topic 2

Elicitation

Techniques
Scoring
Rules

- Risk
- References

- ightharpoonup optimal solution is $r^* = w(p)$
- ► In an experimental setup:

Quadratic Scoring Rule: An Example

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

► Generating objective probabilities dice 1: numbers 0, 1, 2, ..., 9, and

dice 2: numbers $00, 10, 20, \dots, 90$;

The sum of the two dice gives a number between 0 and 100, p

Quadratic Scoring Rule: An Example

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

► Generating objective probabilities dice 1: numbers 0, 1, 2, . . . , 9, and

dice 2: numbers 00, 10, 20, ..., 90;

The sum of the two dice gives a number between 0 and 100, p

What's your probability judgement about the truth of the statement? "The computer rolls the two dice. The outcome is smaller than 20." p = 0.2

Quadratic Scoring Rule: An Example

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

Generating objective probabilities

dice 1: numbers 0, 1, 2, ..., 9, and

dice 2: numbers $00, 10, 20, \dots, 90$;

The sum of the two dice gives a number between 0 and 100, p

▶ What's your probability judgement about the truth of the statement?

"The computer rolls the two dice. The outcome is smaller than 20." p = 0.2

Quadratic Scoring Rule: An Example

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

Generating objective probabilities

dice 1: numbers $0, 1, 2, \ldots, 9$, and

dice 2: numbers $00, 10, 20, \dots, 90$;

The sum of the two dice gives a number between 0 and 100, p

▶ What's your probability judgement about the truth of the statement?

"The computer rolls the two dice. The outcome is smaller than 20." $p = 0.2 = p_R$

p _R (%)	If the statement is true your score is	If the statement is not true your score is
0	40000	60000
:	:	:
15	45550	19550
(20	47200	19200
25	48750	18750
:	:	:
100	60000	40000

Quadratic Scoring Rule: An Example

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

Generating objective probabilities

dice 1: numbers $0, 1, 2, \ldots, 9$, and

dice 2: numbers $00, 10, 20, \dots, 90$;

The sum of the two dice gives a number between 0 and 100, p

▶ What's your probability judgement about the truth of the statement?

"The computer rolls the two dice. The outcome is smaller than 20." $p = 0.2 < p_R$

p _R (%)	If the statement is true your score is	If the statement is not true your score is
0	40000	60000
:	<u>:</u>	:
15	45550	19550
20	47200	19200
25	48750	18750
:	:	-
100	60000	40000

Quadratic Scoring Rule: An Example

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

Generating objective probabilities

dice 1: numbers 0, 1, 2, ..., 9, and

dice 2: numbers $00, 10, 20, \dots, 90$;

The sum of the two dice gives a number between 0 and 100, p

▶ What's your probability judgement about the truth of the statement?

"The computer rolls the two dice. The outcome is smaller than 20." $p = 0.2 > p_R$

<i>p_R</i> (%)	If the statement is true your score is	If the statement is not true your score is
0	40000	60000
÷	:	:
15	45550	19550
20	47200	19200
25	48750	18750
:	:	:
100	60000	40000

Mood Induction

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and

Risk

Mood Induction

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- ▶ Many experiments rely on specific emotions or moods for participants
- Perhaps a positive mood can relate to higher productivity
- Or, a negative mood may reduce reciprocity
- ► Thus, various methods are used to induce specific moods

Mood Induction Techniques

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

► Imagination: Subjects instructed to imagine situations from their lives the evoke desired mood

Mood Induction Techniques

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- ► Imagination: Subjects instructed to imagine situations from their lives the evoke desired mood
- ➤ Velten MIP: A number of statements describing either positive or negative evaluations are presented, subjects are instructed to try to feel the mood described as they read through the statements

Mood Induction Techniques

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- ► Imagination: Subjects instructed to imagine situations from their lives the evoke desired mood
- ▶ Velten MIP: A number of statements describing either positive or negative evaluations are presented, subjects are instructed to try to feel the mood described as they read through the statements
- ▶ Film/Story: Using some funny clip or otherwise induce mood to participants
- ► Music: Similarly to film, to induce some mood

Mood Induction Techniques

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- ► Imagination: Subjects instructed to imagine situations from their lives the evoke desired mood
- Velten MIP: A number of statements describing either positive or negative evaluations are presented, subjects are instructed to try to feel the mood described as they read through the statements
- ▶ Film/Story: Using some funny clip or otherwise induce mood to participants
- ▶ Music: Similarly to film, to induce some mood
- ► Feedback: Both positive and negative
- ► Social: Interaction Expose participants to particular social interactions
- ► Gift: Give sweets, or 'reward'..?

Velten MIP: Statement Examples - A

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and

Risk

- ▶ We have two kinds of nouns denoting physical things: individual and mass nouns.
- ► The Orient Express travels between Paris and Istanbul
- Slang is a constantly changing part of the language
- ▶ Boeing's main plant in Seattle employs 35,000 people

Velten MIP: Statement Examples - B

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- ► Every now and then I feel so tired and gloomy that I'd rather just sit down than do anything
- ▶ I've had important decisions to make in the past and I've sometimes made the wrong ones
- ► I've doubted that I'm a worthwhile person

Velten MIP: Statement Examples- C

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- ▶ I feel enthusiastic and confident now
- My favourite song keeps going through my head
- Life is firmly in my control
- ► If I set my mind to it, I can make things turn out fine.

Why Mood Induction?

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

- ▶ Why not just ask people what their mood might be?
- Reported mood has many weaknesses
- Problems:

Do people know?

Are they truthful?

How to incentivize?

Control?

Causation?

Mood Induction in Economics

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- ► Early work in psych suggests that there is a link between mood and several factors that should matter in the workplace (note the huge importance of Alice Isen):
- Positive emotion influences the capacities of choice and innovative content (Isen, 2000), improves memory recall (Isen et al. 1978; Teasdale and Fogarty 1979), leads to greater altruism (Isen and Simmonds 1978).
- ▶ Isen and Reeve (2005) show that positive affect induces subjects to change their allocation of time towards more interesting tasks.
- ▶ Isen et al (1978) find that positive affect leads to greater altruistic helping of others. These findings apply to unpaid settings.
- Survey data also suggests a link between mood & productivity.

Experiment: Mood and Productivity

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

Happiness and productivity, Journal of Labor Economics 33(4): 789-822, 2015 by Andrew Oswald, Eugenio Proto and Daniel Sgroi.

Which MIP to use?

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- ► The key difficulty is how to 'assign' emotions to people to produce a randomized trial.
- Mood-induction procedures: the best is supposedly a mix: e.g. audio-visual (Westermann et al, 1996).
- So we used a comedy clip: https://www.youtube.com/watch?v=ggOa9aSG-Ow
- ▶ Restricted the laboratory pool to subjects of an English background who had likely been exposed to similar humour before.

When to use MIP

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- Likely to last only for a short period.
- ▶ Needed to be shown just before a task designed to reveal productivity

When to use MIP

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- Likely to last only for a short period.
- Needed to be shown just before a task designed to reveal productivity
- ► Control Group: A neutral setting:
 - no clip
 - a neutral clip (a placebo): essentially a screensaver involving colourful sticks).
- ▶ It seemingly made no difference which control was used, but this was important to check (e.g. the time spent watching the movie might have been important).

Productivity

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- Main productivity task previously used in Niederle and Vesterlund (2007), which entails asking subjects to add sequences of five 2-digit numbers under timed conditions.
- \triangleright Example: 31 + 56 + 14 + 44 + 87 = ?
- ► Comparatively simple but is taxing under pressure.
- ► It might be thought of as representing in a highly stylized way an iconic white-collar job: both intellectual ability and effort are rewarded.

Controls: ability

Topic 2

Elicitation Techniques

Scoring Rules

Mood

Induction

Time and Risk

- ► They also require subjects to undertake GMAT math-style questions.
- ► They supplement this with information about A-Levels (high school) final marks
- ► The aim was to allow us to control for heterogeneous ability levels, while remaining open for happiness to affect ability too.

Controls: payment

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- Payment is essential is we are trying to model the workplace.
- ▶ But what sort of payment?
- ► We used piece rates (pay per correct answer) which were specified precisely (£0.50 per correct answer).
- And a "hidden" bonus where participants were told they would be paid a bonus if they did well, but the precise amount was left unspecified.
- ▶ This captures a piece-rate wage and a performance related bonus.
- ► The results were robust to payment type.

When to ask about happiness?

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- At the end of the experiment:
 - After the questionnaire was completed, subjects received payment as calculated by the central computer.
- At the very start of the experiment and after the treatment.
 Think about the reasons why asking before or after the clip or main tasks might be better

A real-life MIP

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- ▶ In real life there are lots of things that raise or lower happiness.
- ▶ Ethically we cannot induce anything too serious in the lab, but if people have suffered bad life events in the real world we can see if these have an effect.

A real-life MIP

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- ► They looked at deaths in the family (parents, siblings, grandparents) and serious illness in the close family (parents, siblings): "bad life events" or BLEs.
- ► They asked subjects to report deaths/illness in the family and when these took place.
- They asked this during the final questionnaire (we did not want the memory to generate an effect).
- ► They can think of BLEs as nature-induced MIP: shocks randomly distributed by nature so they satisfy the idea of a random assignment.

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Induction

Time and Risk

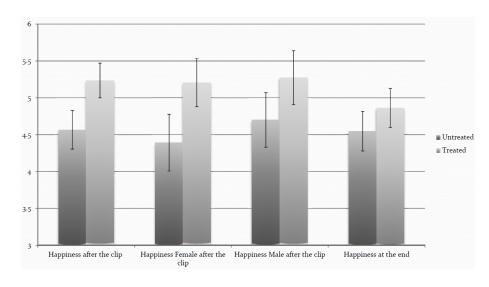


Figure: MIP

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

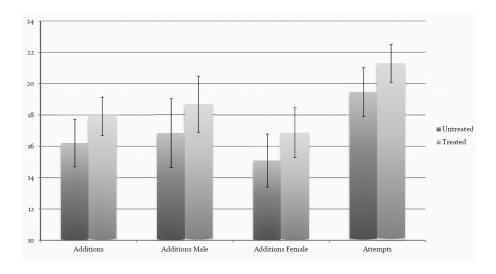


Figure: Productivity

Topic 2

Elicitation Techniques

Scoring Rules

Mood

Induction

Time and Risk

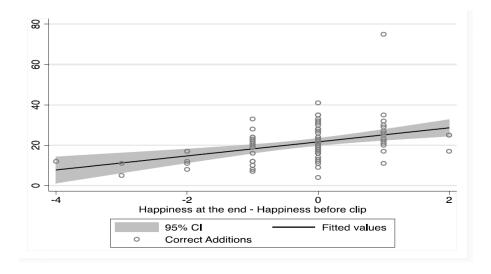


Figure: Corr

Topic 2

Elicitation Techniques

Scoring Rules

Mood

Induction

Time and Risk

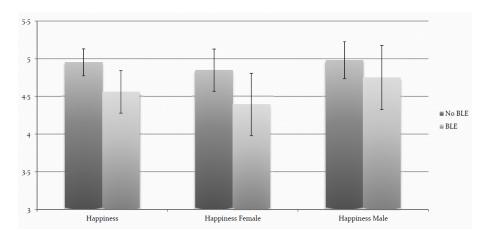


Figure: BLE

Topic 2

Elicitation Techniques

Scoring Rules

Mood

Induction

Time and Risk

References

Happiness, Cooperation and Language, Journal of Economic Behavior & Organization 168: 209-228, 2019 by Eugenio Proto, Daniel Sgroi and Mahnaz Nazneen.

Mood and Cooperation

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- Proto, Sgroi and Nazneen (2019) look at whether happier people are more or less cooperative.
- ➤ They use the repeated prisoner's dilemma: typically experiments show that there is a fair bit of cooperation (despite the one-shot dominance of the "defect" action).
- Cooperation falls when individuals are exposed to a happiness boosting MIP (in this case a Velten plus music MIP) as compared to the neutral (Velten plus music) MIP.
- ► This holds regardless of uncertainty about the number of repetitions or whether there is pre-play communication.
- Using pre-play communication (text entry) they also analyse the text to find evidence that happier individuals are more inward-oriented words (greater use of "I") and in general use more negative and less positive language.

Time and Risk

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

Time and Risk

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

► Static Decision Making Under Risk

Time and Risk

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- ► Static Decision Making Under Risk
 - 1. Expected Utility
 - 2. Prospect Theory

Time and Risk

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- Static Decision Making Under Risk
 - 1. Expected Utility
 - 2. Prospect Theory
- ► Intertemporal Preferences: Dynamic Decision making with Deterministic Outcomes

Time and Risk

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- Static Decision Making Under Risk
 - 1. Expected Utility
 - 2. Prospect Theory
- ► Intertemporal Preferences: Dynamic Decision making with Deterministic Outcomes
 - 1. Exponential discounting model
 - 2. Hyperbolic discounting model
 - 3. Demand for commitment devices

Time and Risk Preferences in Individual Decision Making

1. Time and risk are independent *

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

Time and Risk Preferences in Individual Decision Making

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

1. Time and risk are independent *

- Constant discounting: Loewenstein & Prelec (1992), Laibson (1997) Loewenstein (1987)
- Non-expected utility: Allais (1953), Tversky & Kahneman (1992), Starmer (2000)

Behavioural

Time and Risk Preferences in Individual Decision Making

1. Time and risk are independent *

- Constant discounting: Loewenstein & Prelec (1992), Laibson (1997) Loewenstein (1987)
- Non-expected utility: Allais (1953), Tversky & Kahneman (1992), Starmer (2000)

2. Interaction of time and risk*

- ► Theory: Andreoni & Sprenger (2012a) Andreoni & Sprenger (2012b) Andreoni & Sprenger (2015), Benzion et al. (1989), Halevy (2008), Chakraborty, Halevy et al. (2016), Pan, Webb & Zank (2019), Chakraborty, Halevy & Saito (2020)
- Empirics: Keren & Roelofsma (1995), Abdellaoui, Diecidue & Öncüler (2011), Abdellaoui, Kemel, Panin & Vieider (2018), Baucells & Heukamp (2012)
 - *: with an exception for Halevy (2008) and Keren & Roelofsma (1995)

Topic 2 **Flicitation**

Techniques Scoring

Rules Mood

Time and Risk

Time and Risk Trade-off

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- Consider the decision-maker prefers a smaller outcome now to a larger outcome later.
- ▶ With an equal delay in both options, the decision-maker prefers the larger-later outcome to the smaller-sooner outcome.
- ► This is known as present bias and hyperbolic discounting explain this behaviour.
- ► However, Weber & Chapman (2005)*, Keren & Roelofsma (1995) and Baucells & Heukamp (2012) experimentally show that:
 - when the present (smaller) outcome is risky, the decision-maker prefers the larger-later outcome with and without time-delay.

Topic 2

Elicitation Techniques

Scoring Rules

Mood

Induction

Time and Risk

References

To participate in live polls, contribute questions and view live results access Vevox from your web browser

https://vevox.app/#/m/172654942

Session ID: 172-654-942

Motivating Example

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

Hyperbolic Discounting can explain time delay

A) £100, for sure, now v.s. £110, for sure, 4 weeks 82% v.s. 18%

Motivating Example

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

Hyperbolic Discounting can explain time delay

- A) £100, for sure, now v.s. £110, for sure, 4 weeks 82% v.s. 18%
- A') £100, for sure, 26 weeks v.s. £110, for sure, 30 weeks 37% v.s. 63%

Motivating Example

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

Hyperbolic Discounting can explain time delay

- A) £100, for sure, now v.s. £110, for sure, 4 weeks 82% v.s. 18%
- A') £100, for sure, 26 weeks v.s. £110, for sure, 30 weeks 37% v.s. 63%

and cannot explain time delay when outcomes are risky

B) £100, 0.5, now v.s. £110, 0.5, 4 weeks 39% v.s. 61%

Behavioural Motivating Example nomics

Hyperbolic Discounting can explain time delay

A) £100, for sure, now v.s. £110, for sure, 4 weeks

Topic 2

Eco-

Flicitation Techniques A') £100, for sure, 26 weeks v.s. £110, for sure, 30 weeks

Rules Mood Induction

Scoring

Time and

Risk

References

33% v.s. 67%

82% v.s. 18%

37% v.s. 63%

39% v.s. 61%

Source: Keren & Roelofsma (1995)

and cannot explain time delay when outcomes are risky

B) £100, 0.5, now v.s. £110, 0.5, 4 weeks

B') £100, 0.5, 26 weeks v.s. £110, 0.5, 30 weeks

Behavioural

Motivating Example

Topic 2

Elicitation Techniques

Scoring Rules

Mood

Induction
Time and

Risk

References

Hyperbolic Discounting can explain time delay A) f(x) = f(x) v.s. f(x) = f(x) v.s. f(x) = f(x)

and cannot explain time delay when outcomes are risky

A') £100, for sure, 26 weeks v.s. £110, for sure, 30 weeks

82% v.s. 18%

37% v.s. 63%

B) £100, 0.5, now v.s. £110, 0.5, 4 weeks

39% v.s. 61%

B') £100, 0.5, 26 weeks v.s. £110, 0.5, 30 weeks 33% v.s. 67%

33% v.s. 67%

Source: Keren & Roelofsma (1995)

Behavioural

Motivating Example

Topic 2

Flicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

33% v.s. 67%

Source: Keren & Roelofsma (1995)

82% v.s. 18%

Hyperbolic Discounting can explain time delay

£100, for sure, now v.s. £110, for sure, 4 weeks

A') £100, for sure, 26 weeks v.s. £110, for sure, 30 weeks 37% v.s. 63%

and cannot explain time delay when outcomes are risky

£100, 0.5, now v.s. £110, 0.5, 4 weeks

39% v.s. 61%

B') £100, 0.5, 26 weeks v.s. £110, 0.5, 30 weeks

Behavioural

Motivating Example

Topic 2

Flicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

Hyperbolic Discounting can explain time delay £100, for sure, now v.s. £110, for sure, 4 weeks

82% v.s. 18%

£100, for sure, 26 weeks v.s. £110, for sure, 30 weeks 37% v.s. 63%

and cannot explain time delay when outcomes are risky

£100, 0.5, now 39% v.s. 61%

v.s. £110, 0.5, 4 weeks

B') £100, 0.5, 26 weeks v.s. £110, 0.5, 30 weeks 33% v.s. 67%

Source: Keren & Roelofsma (1995)

Time and Risk Trade-off

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

Readings: Keren & Roelofsma (1995)

- ► Their findings show that present bias becomes weaker when the certainty of obtaining the outcome in the present is reduced.
- ► This preference reversal is a result of the decision-maker's perception of the probability rather than time inconsistency.
- ► Theories of intertemporal choice, such as quasi-hyperbolic discounting, cannot account for this experimental evidence.

Time and Risk Trade-off

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

- ► Halevy (2008) models the behaviour of a decision-maker who may perceive a delayed outcome as a risky outcome
- ▶ there is a possibility that the delayed outcome will not be materialised.

Time and Risk Trade-off

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

- ► Halevy (2008) models the behaviour of a decision-maker who may perceive a delayed outcome as a risky outcome
- ▶ there is a possibility that the delayed outcome will not be materialised.
- ► The motivation for this rests on the interpretation that the difference between the present and the future is that today is certain, and the future is uncertain.

Time and Risk Trade-off

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

- ► Halevy (2008) models the behaviour of a decision-maker who may perceive a delayed outcome as a risky outcome
- there is a possibility that the delayed outcome will not be materialised.
- ► The motivation for this rests on the interpretation that the difference between the present and the future is that today is certain, and the future is uncertain.
- ► This approach takes the future as a random process that stops delivering future outcomes with a positive probability.

Time and Risk Trade-off

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

References

- ► Halevy (2008) models the behaviour of a decision-maker who may perceive a delayed outcome as a risky outcome
- ▶ there is a possibility that the delayed outcome will not be materialised.
- ► The motivation for this rests on the interpretation that the difference between the present and the future is that today is certain, and the future is uncertain.
- ► This approach takes the future as a random process that stops delivering future outcomes with a positive probability.
- ▶ With this interpretation, the delayed outcome is risky since there might be events between today and the future, which prevents obtaining future outcomes.
- ► This explains how intertemporal choices may be perceived as being risky choices.

Time and Risk

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- ► Halevy's (2008) framework explains this experimental evidence through the decision-maker's perception of the probability.
- ► This line of literature establishes an equivalence between the decision-maker being disproportionately sensitive to certainty, as in Allais (1953) and Kahneman & Tversky (1979) and exhibiting present bias.
- ► The difference between the present and the future is attributed to the possibility of reaching the future.

Time and Risk

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- \triangleright Consider there is a constant probability of 1 p of termination.
- ▶ i.e., outcomes further away in time are less likely to be obtained.

Time and Risk

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- \triangleright Consider there is a constant probability of 1 p of termination.
- ▶ i.e., outcomes further away in time are less likely to be obtained.
- Let $\mathbf{x} = (x_0, x_1, x_2, ...)$ be a deterministic lifetime future outcome, and x_0 is the outcome at t = 0 and so on.

Time and Risk

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- ightharpoonup Consider there is a constant probability of 1-p of termination.
- ▶ i.e., outcomes further away in time are less likely to be obtained.
- Let $\mathbf{x} = (x_0, x_1, x_2, ...)$ be a deterministic lifetime future outcome, and x_0 is the outcome at t = 0 and so on.
- ▶ Denote the termination probability by 1 p, hence the continuation probability is p.

Behavioural

Time and Risk

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- \triangleright Consider there is a constant probability of 1 p of termination.
- ▶ i.e., outcomes further away in time are less likely to be obtained.
- Let $\mathbf{x} = (x_0, x_1, x_2, ...)$ be a deterministic lifetime future outcome, and x_0 is the outcome at t = 0 and so on.
- ▶ Denote the termination probability by 1 p, hence the continuation probability is p.
- ► A decision-maker utility of outcomes is evaluated by:

$$DEU_{H}(\mathbf{x}) = \sum_{t=0}^{\infty} w_{H}(p^{t}) \, \delta^{t} \, u(x_{t})$$
 (2)

- $ightharpoonup \delta$ is the constant pure time preference,
- w_H is an increasing and convex function from the unit interval to itself, satisfying $w_H(0) = 0$, $w_H(1) = 1$,
 - \triangleright $u(x_t)$ is the decision-maker's utility function.

Time and Risk

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- \triangleright w_H represents a pessimistic attitude toward obtaining future outcomes (Wakker 1994)*
- ➤ Since all outcomes are deterministic, the risk that future outcomes will stop is amplified through the possibility of reaching the next period or obtaining the outcome at *t*.
- ► Hence, the decision-maker assigns smaller weights to future outcomes relative to the present outcome.
- ► The weights attached to the future outcomes fall rapidly.

Behavioural Eco-

Time and Risk

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- \triangleright w_H represents a pessimistic attitude toward obtaining future outcomes (Wakker 1994)*
- ▶ Since all outcomes are deterministic, the risk that future outcomes will stop is amplified through the possibility of reaching the next period or obtaining the outcome at *t*.
- ► Hence, the decision-maker assigns smaller weights to future outcomes relative to the present outcome.
- ► The weights attached to the future outcomes fall rapidly.
- Formally, discounting future outcomes has two components:
 - 1. the decision-maker's time discounting
 - 2. perception of the probability

$$D(t) = w_H(p^t) \delta^t$$
 (3)

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- Abdellaoui, M. (2000), 'Parameter-free elicitation of utility and probability weighting functions', <u>Management science</u> **46**(11), 1497–1512.
- Abdellaoui, M., Bleichrodt, H. & l'Haridon, O. (2008), 'A tractable method to measure utility and loss aversion under prospect theory', <u>Journal of Risk and uncertainty</u> **36**(3), 245–266.
- Abdellaoui, M., Bleichrodt, H., l'Haridon, O. & Van Dolder, D. (2016), 'Measuring loss aversion under ambiguity: A method to make prospect theory completely observable', <u>Journal of Risk and Uncertainty</u> **52**(1), 1–20.
- Abdellaoui, M., Bleichrodt, H. & Paraschiv, C. (2007), 'Loss aversion under prospect theory: A parameter-free measurement', <u>Management Science</u> 53(10), 1659–1674.
- Abdellaoui, M., Diecidue, E. & Öncüler, A. (2011), 'Risk preferences at different time periods: An experimental investigation', <u>Management Science</u> **57**(5), 975–987.
- Abdellaoui, M., Kemel, E., Panin, A. & Vieider, F. M. (2018), 'Take your time or take your chance: Time discounting as a distorted probability'.
- Allais, M. (1953), 'The behavior of the rational man to the risk: Review of assumptions and axioms of american school (le comportement de l'homme rationnel devant le risque: Critique des postulats et axiomes de l'ecole americaine)', <u>Econometrica</u> **21**, 503–546.
- Andreoni, J. & Sprenger, C. (2012a), 'Estimating time preferences from convex budgets', American Economic Review **102**(7), 3333–56.

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- Andreoni, J. & Sprenger, C. (2012b), 'Risk preferences are not time preferences', American Economic Review **102**(7), 3357–76.
- Andreoni, J. & Sprenger, C. (2015), 'Risk preferences are not time preferences: reply', American Economic Review **105**(7), 2287–93.
- Baucells, M. & Heukamp, F. H. (2012), 'Probability and time trade-off', <u>Management Science</u> **58**(4), 831–842.
- Benzion, U., Rapoport, A. & Yagil, J. (1989), 'Discount rates inferred from decisions: An experimental study', <u>Management science</u> **35**(3), 270–284.
 - Blanco, M., Engelmann, D., Koch, A. K. & Normann, H.-T. (2014), 'Preferences and beliefs in a sequential social dilemma: a within-subjects analysis', <u>Games and Economic Behavior</u> **87**, 122–135.
- Blavatskyy, P. (2021), 'A simple non-parametric method for eliciting prospect theory's value function and measuring loss aversion under risk and ambiguity', <u>Theory and Decision</u> **91**(3), 403–416.
- Bleichrodt, H. & Pinto, J. L. (2000), 'A parameter-free elicitation of the probability weighting function in medical decision analysis', <u>Management science</u> **46**(11), 1485–1496.
- Bleichrodt, H., Pinto, J. L. & Wakker, P. P. (2001), 'Making descriptive use of prospect theory to improve the prescriptive use of expected utility', <u>Management science</u> 47(11), 1498–1514.

Behavioural Eco- nomics	Booij, A. S., Van Praag, B. M. & Van De Kuilen, G. (2010), 'A parametric analysis of prospect theory's functionals for the general population', <u>Theory and Decision</u> 68 (1-2), 115-148.
	Chakraborty, A., Halevy, Y. & Saito, K. (2020), 'The relation between behavior under risk and over time', <u>American Economic Review: Insights</u> 2 (1), 1–16.
Topic 2	Chakraborty, A., Halevy, Y. et al. (2016), 'Allais meets strotz: Remarks on the relation between present bias and the certainty effect', <u>Vancouver School of Economics</u> .
Elicitation Techniques	Costa-Gomes, M. A. & Weizsäcker, G. (2008), 'Stated beliefs and play in normal-form games', The Review of Economic Studies 75 (3), 729–762.
Scoring Rules	Dhami, S. (2016), <u>The foundations of behavioral economic analysis</u> , Oxford University Press.
Mood Induction	Fishburn, P. C. & Kochenberger, G. A. (1979), 'Two-piece von neumann-morgenstern utility functions', <u>Decision Sciences</u> 10 (4), 503–518.
Time and Risk	Gächter, S., Johnson, E. J. & Herrmann, A. (2021), 'Individual-level loss aversion in riskless and risky choices', <u>Theory and Decision</u> pp. 1–26.

References

American Economic Review 98(3), 1145-62.

Halevy, Y. (2008), 'Strotz meets allais: Diminishing impatience and the certainty effect',

Johnson, E. J., Gächter, S. & Herrmann, A. (2006), 'Exploring the nature of loss aversion'.

Kahneman, D. & Tversky, A. (1979), 'Prospect theory: An analysis of decision under risk', Econometrica: Journal of the econometric society pp. 263-291.

Topic 2

Elicitation Techniques

Scoring Rules

Mood Induction

Time and Risk

- Keren, G. & Roelofsma, P. (1995), 'Immediacy and certainty in intertemporal choice', Organizational Behavior and Human Decision Processes **63**(3), 287–297.
- Köbberling, V. & Wakker, P. P. (2005), 'An index of loss aversion', <u>Journal of Economic Theory</u> **122**(1), 119–131.
- Laibson, D. (1997), 'Golden eggs and hyperbolic discounting', <u>The Quarterly Journal of Economics</u> pp. 443–477.
 - Loewenstein, G. (1987), 'Anticipation and the valuation of delayed consumption', <u>The Economic Journal</u> **97**, 666–684.
 - Loewenstein, G. & Prelec, D. (1992), 'Anomalies in intertemporal choice: Evidence and an interpretation', The Quarterly Journal of Economics **107**(2), 573–597.
 - Mukherjee, S., Sahay, A., Pammi, V. & Srinivasan, N. (2017), 'Is loss-aversion magnitude-dependent? measuring prospective affective judgments regarding gains and losses.', Judgment & Decision Making 12(1).
 - Nyarko, Y. & Schotter, A. (2002), 'An experimental study of belief learning using elicited beliefs', Econometrica **70**(3), 971–1005.
 - Offerman, T., Sonnemans, J., Van de Kuilen, G. & Wakker, P. P. (2009), 'A truth serum for non-bayesians: Correcting proper scoring rules for risk attitudes', <u>The Review of Economic Studies</u> **76**(4), 1461–1489.
 - Pan, J., Webb, C. S. & Zank, H. (2019), 'Delayed probabilistic risk attitude: a parametric approach', <u>Theory and Decision</u> pp. 1–32.

Behavioural Eco-	Pennings, J. M. & Smidts, A. (2003), 'The shape of utility functions and organizational behavior', Management Science 49(9), 1251–1263.
nomics	Schlag, K. H., Tremewan, J. & Van der Weele, J. J. (2015), 'A penny for your thoughts: A survey of methods for eliciting beliefs', Experimental Economics 18(3), 457–490.
Topic 2	Schmidt, U. & Traub, S. (2002), 'An experimental test of loss aversion', <u>Journal of Risk and Uncertainty</u> 25 (3), 233–249.
Elicitation	Sonnemans, J. & Offerman, T. (2001), Is the quadratic scoring rule really incentive compatible?, Technical report, Working paper CREED, University of Amsterdam.
Techniques Scoring	Starmer, C. (2000), 'Developments in non-expected utility theory: The hunt for a descriptive theory of choice under risk', <u>Journal of economic literature</u> 38 (2), 332–382.
Rules	Trautmann, S. T. & van de Kuilen, G. (2015), 'Belief elicitation: A horse race among truth serums', The Economic Journal 125(589), 2116–2135.
Induction Time and	Tversky, A. & Kahneman, D. (1992), 'Advances in prospect theory: Cumulative representation of uncertainty', <u>Journal of Risk and uncertainty</u> 5(4), 297–323.
Risk	Wakker, P. (1994), 'Separating marginal utility and probabilistic risk aversion', <u>Theory</u> and decision 36 (1), 1–44.
References	Wakker, P. & Deneffe, D. (1996), 'Eliciting von neumann-morgenstern utilities when probabilities are distorted or unknown', <u>Management science</u> 42 (8), 1131–1150.
	Weber, B. J. & Chapman, G. B. (2005), 'The combined effects of risk and time on choice: Does uncertainty eliminate the immediacy effect? does delay eliminate the certainty effect?', Organizational Behavior and Human Decision Processes 96(2), 104–118.