International Business and Finance Seminar 3

Junxi Liu

Road Map

- In the first two seminars, we've mainly covered
- Bank essentials: balance sheet; how banks make money; measurements of banks' performance
- Bond essentials: interest rate; compounding; present value and future value
- Today's seminar will be a bridge between the first two seminars and Friday's seminar, when we will talk extensively about derivatives

More on Future Value and Present Value

- Formal way of defining intra-year compounding

$$
F V=P V\left(1+\frac{r}{m}\right)^{m \cdot t}
$$

$$
\begin{gathered}
\text { And if } m \rightarrow+\infty, \text { using } \lim _{m \rightarrow \infty}\left(1+\frac{1}{m}\right)^{m}=e \text {, then } \\
F V=P V . e^{r . t}
\end{gathered}
$$

- The present value of a multiple cash inflows

If an investment project has a series of expected cash flows $C_{1}, C_{2}, \cdots, C_{t}$ extending over t years and if we also assume that the interest (or discount) rate r has no significant change in this period, the present value of all expected returns will be calculated by :

$$
P V=\frac{C_{1}}{(1+r)}+\frac{C_{2}}{(1+r)^{2}}+\cdots+\frac{C_{t}}{(1+r)^{t}}=\sum_{i=1}^{t} \frac{C_{i}}{(1+r)^{i}}
$$

Net Present Value

- Net present value, is a measure of "is it a good deal?"
- NPV is essentially all your future earnings discounted to today, minus all costs discounted to today
- Positive NPV usually indicates good investment, because - well, why not?

$$
\begin{gathered}
N P V=\sum_{i=1}^{t} \frac{C_{i}}{(1+r)^{i}}-I_{0}>0 \\
N P V=\sum_{i=1}^{t} \frac{C_{i}}{(1+r)^{i}}-\sum_{j=0}^{m} \frac{I_{j}}{(1+r)^{j}}>0 \quad(m \leq t)
\end{gathered}
$$

Some Very Important Algebra

$$
\begin{aligned}
a_{n} & =a_{1}+(n-1) d \\
S_{n} & =\frac{n}{2}\left[2 a_{1}+(n-1) d\right] \\
& =\frac{n}{2}\left[a_{1}+a_{n}\right] \\
d & =a_{n}-a_{n-1}
\end{aligned}
$$

where,
$\rightarrow a_{n}=n^{\text {th }}$ term
$\rightarrow a_{1}=1^{\text {st }}$ term
$\rightarrow \mathrm{n}=$ number of terms
$\rightarrow S_{n}=$ Sum of n terms
$\rightarrow a_{n-1}=n-1^{\text {th }}$ term
$n^{\text {th }}$ term of a geometric sequence a, $a r$, $a r^{2}, \ldots \ldots$. is,

$$
a_{n}=a r^{n-1}
$$

Sum of n term of a finite geometric sequence is,

$$
a+a r^{2}+a r^{3}+\ldots .+a r^{n-1}
$$

$$
=\frac{a\left(1-r^{n}\right)}{1-r} \quad \text {, when } r \neq 1
$$

Sum of infinite geometric sequence is,

$$
a+a r^{2}+a r^{3}+\ldots=\frac{a}{1-r} \text {, when } r<1
$$

When Sequences Meet Infinity

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a * r^{k}=\lim _{n \rightarrow \infty} a * \frac{r\left(1-r^{n}\right)}{1-r}=a * \frac{r}{1-r}=\frac{a}{\frac{1}{r}-1}
$$

The PV of a perpetuity:

$$
P V=\frac{C}{(1+r)}+\frac{C}{(1+r)^{2}}+\frac{C}{(1+r)^{3}}+\cdots=\sum_{t=1}^{\infty} \frac{C}{(1+r)^{t}}
$$

So, $P V=\frac{C}{r}$ and the rate of return for a perpetuity can be obtained as: $r=\frac{C}{P V}$

Present Value of Bond

$$
\begin{gathered}
P V=\frac{C}{(1+r)}+\frac{C}{(1+r)^{2}}+\cdots+\frac{C}{(1+r)^{t}}+\frac{\text { Face Value }}{(1+r)^{t}}=\sum_{i=1}^{t} \frac{C}{(1+r)^{i}}+\frac{\text { Face Value }}{(1+r)^{t}}: \\
P V=\frac{C}{(1+r)}+\frac{C}{(1+r)^{2}}+\cdots=\sum_{i=1}^{\infty} \frac{C}{(1+r)^{i}}=\frac{C}{r}
\end{gathered}
$$

Growing Perpetuity

Growing Perpetuity:

Let's consider the situation that the stream of a cash flow growing at a constant rate g, so, the PV for growing perpetuity can be written as follows:

$$
\begin{aligned}
P V= & \frac{C_{1}}{(1+r)}+\frac{C_{2}}{(1+r)^{2}}+\frac{C_{3}}{(1+r)^{3}}+\cdots \\
= & \frac{C_{1}}{(1+r)}+\frac{C_{1}(1+g)}{(1+r)^{2}}+\frac{C_{1}(1+g)^{2}}{(1+r)^{3}}+\cdots \\
& =\sum_{i=1}^{\infty} \frac{C_{1}(1+g)^{i-1}}{(1+r)^{i}}=\frac{C_{1}}{r-g}
\end{aligned}
$$

The Present Value of Equity: Valuation of Common Stocks

The Present Value of Equity:

There are two sources of payoff for the shareowners (if they stay with their shares for a year): a) cash dividends and b) capital gain or loss.

If P_{0}, P_{1} are the current and expected price (after a year) of a share, respectively, and Div_{1} is the expected dividend at the end of a year; the expected rate of return r at the end of the year is:

$$
r=\frac{\operatorname{Div}_{1}+\left(P_{1}-P_{0}\right)}{P_{0}}
$$

If dividends grow at a constant rate g each year (like growing perpetuity), the current share price can be calculated by:

$$
P_{0}=\frac{\operatorname{Div}_{1}}{r-g} \quad(\text { if } r>g)
$$

We can re-write the formula to show r (expected return) as the subject. In this case;

$$
r=\frac{D i v_{1}}{P_{0}}+g
$$

Question 6: In 2019, Daimler Chrysler had just paid a dividend of $€ \mathbf{2}$ per share on its equity.
The dividends are expected to grow at a constant rate of $\mathbf{5 \%}$ per year indefinitely. If investors require an $\mathbf{1 1 \%}$ return on the company's equity:
a. What is the current price?
b. What will be the price in 2022?
c. What will be the price in 2034 ?

Question 6:

a. Current price at a constant growth of 5 per cent per year indefinitely

$$
\begin{aligned}
& P=\operatorname{Div}_{1} /(R-g), \text { whereas } \operatorname{Div}_{1}=D_{0}(1+g) \text { i.e. } \operatorname{Div}_{1}=€ 2(1.05)=€ 2.1 \\
& P=€ 2.1 /(0.11-0.05)=€ 35
\end{aligned}
$$

b. Price in 3 years: $P=P_{0}(1+g)^{3}=€ 35(1.05)^{3}=€ 40.52$
c. Price in 15 years: $P=P_{0}(1+g)^{15}=€ 35(1.05)^{15}=€ 72.76$

Exercises on NPV

- You can decide today to invest in a machine that costs $£ 1600$, paid regardless of the state of nature at the end of a year
- At the end of year, the machine produces one unit of product, which is worth $£ 300$ or $£ 100$, with 50-50 probability
- The weighted average cost of capital (WACC) is 10%
- What is the NPV today if the machine can be only used for one period?
- What is the NPV today if the machine continues to produce forever and the price level stays the same forever?

Exercises on NPV

- You can decide today to invest in a machine that costs $£ 1600$, paid regardless of the state of nature at the end of a year
- At the end of year, the machine produces one unit of product, which is worth $£ 300$ or $£ 100$, with 50-50 probability
- The weighted average cost of capital (WACC) is 10%
- What is the NPV today if the machine can be only used for one period?
- What is the NPV today if the machine continues to produce forever and the price level stays the same forever?

$$
\mathrm{NPV}(\text { one period })=\frac{\left(-1600+0.5^{*} 300+0.5^{*} 100\right)}{1.1}=-1272.7
$$

Exercises on NPV

- You can decide today to invest in a machine that costs $£ 1600$, paid regardless of the state of nature at the end of a year
- At the end of year, the machine produces one unit of product, which is worth $£ 300$ or $£ 100$, with 50-50 probability
- The weighted average cost of capital (WACC) is 10%
- What is the NPV today if the machine can be only used for one period?
- What is the NPV today if the machine continues to produce forever and the price level stays the same forever?

$$
\begin{aligned}
N P V_{1} & =-1,600+[0.5(300)+0.5(100)]+\sum_{t=1}^{\infty} \frac{0.5(300)+0.5(100)}{(1+0.1)^{t}} \\
& =-1,600+200+\frac{200}{0.1}=600 \\
N P V_{0} & =600 / 1.1=545.5
\end{aligned}
$$

