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Brain connectivity in neuroimaging

structural connectivity * functional connectivity * effective connectivity

A\ 4 Sporns, 2007
Friston, 1995

Connectivity from uncontrolled
fluctuations

a Areas involved in b Areas correlated with
molor tapping task seed point at rest

Biswal 1995
Smith 2009



Brain Connectivity from uncontrolled fluctuations

Functional connectivity analyses

Psychophysiological and Modulatory Interactions in Neuroimaging
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The APOE ¢4 allele s a risk factor for late-life pathological changes  TMRI studies have tested for early life associations of the APOE
that is also associated with anatomical and functional brain  polymorphism with changes in brain function. Filbey et al. (18) : 1 . )
changes in middle-aged and elderly healthy subjects. We investi-  reported greater activation in 8 APOE ed-carriers compared with Qu Genera ng an teraction regres

gated structural and functional effects of the APOE polymorphism 8 noncarriy re 1. 3 in sor
in 18 young healthy APOE e4-carriers and 18 matched noncarriers ~ a working
(age range: 20-35 years). Brain activity was studied both at rest  reduced ac|

and during an encoding memory paradigm using blood oxygen  ed-carriers
level-dependent fMRI. Resting fMRI revealed increased “default i
mode network” (involving retrosplenial, medial temporal, and

cortical areas) in iers relative
to noncarriers. The encoding task produced greater hippocampal

PSY man effect

activation in e4-carriers relative to noncarriers. Neither result could (task vanable)
be explained by differences in memory performance, brain mor-

/ \ \ , phology, or resting cerebral blood flow. The APOE ¢4 allele
modulates brain function decades before any clinical or neuro-  relative to

ion of ive processes. showing a
e o ) -
hippocampus | memory | neuroimaging | resting connectivity state networks” (RSNs), and they reflect intrinsic properties of o
> / \ ional brain (21). We were inter-

PHYS man effect
(Ume-course from
seed reglon)
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Seed region

1 The PHYS and PP regressor peobably look quite similar here, The diflsrence may be slightly
D Ual Regress ion clearer () when 1e Three Ume-Courses are shown supernimposed:

>1_’ >10 4 R ARE B | |

Now you can 866 that ™e red ine (he PP regressor) is intarestied” in voxels which comelae
with hhe timecourse in the seed region (Diue; PHYS regressor) during the task blocks
(ndicated by black ine, PSY regressor), bet is decomelated with the (Dive) PHYS regressor
outside the task blocks = the minor peaks in PPI and PHYS coincide during "on’ task blocks,
but peaks coINCide with roughs during ‘off task Diocks.

Note: Vioxals in which actvity is equally comelated with the seed region Smecourse all the
time will not show any correlation with he PP regressor

Psycho-physiological interactions

Nodes (voxeis) within submodules in a module

Analysis of graph theoretic measures



Reasons for skepticism..

With no model of signal, analyses will be extremely sensitive to variations in noise:

-> WW Pxaya Differences in patient
WWV\M ° groups (e.g. vascular tone)

Healthy Patients

WI\/WMW‘N Differences across activation states
/me"‘l\ Pxa,ya l (e.g. BOLD ceiling)

condltlon I condition 2



Reasons for skepticism..

Correlation on its own in general provides little insight the changes/differences in signal

Py

= Pxa,ya l
W‘(W\'m u Region 1 Region 2

Increase in noise ° °
o W\V’“\M Pxa,ya T l l
NWWJ X €===> y
Increase in signal levels

e - WM an,yaT
Pt PPy

Increase in common activity in one of two regions

Pxa.ya




Dynamic Causal Modelling

Exogenous inputs
Attention
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DCM of random fluctuations

Stochastic DCM: models endogenous stochastic fluctuations

- Variational Bayesian generalised filtering estimation
- Communicated dynamics are modelled to have low frequency dynamics

Recent alternate approach uses deterministic
model using on cross-spectra of time series.

Strengths:

Models can distinguish SNR changes, different
types of inter-regional connectivity topologies

Generative model:

- estimates physiological variables (pharma)

- can be used to generate expected observable
statistics such as correlation, graph-theoretic
measures, etc.
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DCM of random fluctuations

Stochastic DCM: models endogenous stochastic fluctuations

- Variational Bayesian generalised filtering estimation
- Communicated dynamics are modelled to have low frequency dynamics

Recent alternate approach uses deterministic
model using on cross-spectra of time series.

Endogenous fluctuations . Hidden states
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Models are complex, computationally challenging: _ |
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- require ROI definition - not mapping

- test limited numbers of model topologies
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Goal

|dentify a simple approach to characterising connectivity that can provide
some of the insight provided by DCM, while still enabling mapping.

Strategy:

Focus on identification of types of pairwise changes in relationship



Basic features of dynamics affecting connectivity
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Basic features of dynamics affecting connectivity
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Shared/Unshared Signal Model

Pairwise model linking regions X and Y.

Shared signal

/ \ proportion of shared signal y
2 xa w2
Ux —> ° a <« U,

Unshared signal (x) l

Condition a

Unshared signal (y)

BOLD signal X <€=-=-=-> Y
; Pxaya ;
BOLD statistics (corr,var) Oxa Oya
Condition b

Shared signal

w%/ w2y, proportion of shared signal (y)
Ux —> ° ° «— U

Unshared signal (x) l

BOLD signal X <€===» Y

Unshared signal (y)

; Pxb,yb ;
BOLD statistics (corr,var) oy Oyb

Model Formulation

BOLD signal for condition a as a function of S and Ux Uy.

r, = o, (w, S+ \,-"ll -wi U,) (1)

Ya = 0y (w, S+ V 1 - U,,) (2)

Proportion of shared signal in each region is bounded by correlation

cov ('ru ] "u ' 3
Prowe = (3)
a, ) ﬂu“
Wy O Wy Ty
Prowe — (4)
o, nv..
Proy. = Wy W, — Pa < Wy, < | (5)

Condition b produces some change in levels of shared and unshared signals
- Wxb = Cx Wxa, Wyb = Cy Wya., matching the total change in variance:

Iy Oy, (“.“':.‘S + Uy \}.",l —_ ”':'. . U:)
a, a f (6)
= Oy, (;"J“',_S b —u, \l u";' ~U‘)
n“' n’- . ;

New observed variance can be expressed:

at = n; (‘f“'f., $ u;“'(l uf)] (7)

£y

Pxb.yb Can be expressed in terms of Oxa,Oxb Oya, Oyb, Way, and Ux

o, T,

Po = Pa——=CyCy (8)
n“. nu\
7y (7‘ " '3 2 l I.nzl o " 3 u
pa——\] =5 —ui(l - w} ) - u:.,(l - U';J —= (9)
o, 0, \ 02 Pa
/ n"-' , ,'l a? )2
= sign{p,) \'n 1 —_ (Uf u';' )\.' | — (uj" ,': ) (10)
o S B )

Given the limits on way, maximum effects of particular changes in signal and
noise on pxvyb can be determined based on variance changes. E.g. if there

was no change in signal levels:
"'. (’\‘-.
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Determining possibility of different changes

Pxa,ya Oxa,Oxb Oya, Oyp, =3  Oxb yb

A\WN"WMW Oxa f cx=1 (Ux>1) o o,
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Determining possibility of different changes
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Experiment

Active-state sessions (6 minutes, TR=1.3)

Rest ) ’J\l.hz
Motor ‘ .

Finger tapping
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Visual & Motor

Tasks

FMRI Sessions

Visuo-Motor with Attention Task

Task Block Design (block=30 sec): |

u u Abstract video

Are changes in connectivity across associated with variance changes?

Do these changes correspond to particular types of changes in connectivity
- are they predicted by model?

How about activation levels?



Results

+»90000

Variance changes from rest for visual Variance changes from rest for motor
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Results
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Variance changes from rest for visual Variance changes from rest for motor

No change in variance. One region increases in variance Both regions increase in variance
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Results

Variance changes from rest for visual Variance changes from rest for motor
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Results
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Variance changes from rest for visual Variance changes from rest for motor
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Results
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Variance changes from rest for visual Variance changes from rest for motor
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Results
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Variance changes from rest for visual Variance changes from rest for motor
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Results
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Variance changes from rest for visual Variance changes from rest for motor
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Variance changes from rest for visual Variance changes from rest for motor
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Summary

We have identified a simple model that links correlation and variance to provides insight into
the types of dynamics underlying connectivity changes

In a test dataset we could find almost every proposed feature of dynamics
Most changes in correlation are accompanied by some change in variance
DCM models typically predict variance changes, so are validated by these results

Software is under development

Future directions

Smooth integration with functional connectivity and DCM analyses

More signal components: relationship to ICA?
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