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Overview

» Standard “Mass-univariate modelling”
— Strengths & Limitations

» Bayesian Hierarchical Spatial Model
— Group fMRI
— Meta Analysis
— Reverse Inference



Huge Individual Variability

* 10 subjects, same fMRI working memory task
— Profound variation in spatial location, ROI response

—

4.391

Left dorsolateral prefrontal Avg%A Left intraparietal sulcus Avg%A Left middle temporal Avg%A
03 ﬂ 0.3
0.25 l 0.25
0.2 0.2 [ '
0.15 0.15 .
' I
0.1 L 0.1 .
o.0slll 1 lLoad 1 0.05 MlLoad 1 MlLoad 1
' [lLoad 3 [Load 3 I [Load 3
0 [ JLoad 5 o [ JLoad 5 I [ JLoad 5
12345678910 12345678910 123 45678 910
Subject Subject Subject

Yendiki et al. (2010). Multi-site characterization of an fMRI working memory paradigm: reliability of activation indices. Neurolmage, 53(1), 119-31.



Mass-Univariate Can't
Capture Spatial Heterogeneity

» Controls false positive risk
— e.g. T=5.56, pf"WE = 0.003

— But no inference on location

 e.g. max T at (40,-75,10)
but no confidence interval

— “Result” is 100,000 Yes/No's, significance ét voxel
* Only see effects that co-align — thus smoothing

Individual responses Toy lllustration: Ind\;\\;iitdhu:rlmqrc?gﬁw?r?ges

No smoothing - 3 subjects’ data before
& after smoothing

 “Activation” only found
where no one
activates!




Blue-sky inference:
What we'd like

— Signal location?
6Mag.

» Estimates and Cl’s on .'
— Signal ? -
O

\

|

(X,y,z) location
* Cl's on % change
— Spatial extent? i Ext.
OC.
* Estimates and Cl’'s on activation volume

 Robust to choice of cluster definition

N



Real-life inference:
What we get with mass-univariate

» Signal location
— Local maximum — no inference
— Center-of-mass — no inference
» Sensitive to blob-defining-threshold
« Signal
— Local maximum intensity — P-values (& CI’s)
« Spatial extent
— Cluster volume — P-value, no Cl’s
« Sensitive to blob-defining-threshold

* Need explicit spatial modelling



Our Spatial Hierarchical Model

Level 1: Population Centers

— Center of activation in the population
Level 2: Individual Centers

— Center of local activation for a subject

— Clustered about population centers
Level 3: Individual Components

— Capture shape of individual's activations
— Clustered about individual centers

Level 4: Observed fMRI Data

— Mixture of a ‘null’ background Gaussian &
non-null Gaussians, one per Individual Component

Xu, Johnson, Nichols & Nee (2009). Modeling Inter-Subject Variability in fMRI Activation
Location: A Bayesian Hierarchical Spatial Model. Biometrics, 65(4), 1041-1051.



4-Level Spatial
Hierarchy
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Posterior Sampling

« Posterior complicated, but

factorable

Number of individual

components, individual

centers, population centers
Reversible Jump MCMC

Ppirth = Paeatn= 1/2

Over-sample the RJI-MCMC
moves 5x per iteration for
better mixing

Remaining parameters,

conditional on # of centers
Gibbs or Metropolis-Hastings
(MH)

— Adaptive calibration of MH
proposal variance to 35%
acceptance rates
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Classical Comparison

* Mass univariate modelling
— t-test image
— -log,, P-value image
— FWE & FDR thresholding



Real Data Application

 Pro-active Interference Resolution

— Task consists of many trials, must remember letters
on each trial only

) Encode: FCRDH ) Delay )Recall: C?) [ Correct Response: YES |

) Encode: RGDVF ) Delay )Recall:A?) [ Correct Response: NO |

)Encode: CDWRU ) Delay )Recall: F?) [ Correct Response: NO ] [ Recentprobe |

[ Non-recent ]
probe

— Must suppress memory of previous trials
— People are slower and less accurate when probe
letter is from a recent (not current) trial
« fMRI contrast of selected trials

Correct “NO” response for recent probe versus
Correct “NO” response for non-recent probe

— Expected activation in lateral prefrontal cortex (LPFC)



Real Data Application

* Unsmoothed fMRI images from 18 subjects
— Standardized to standard space, 79 x 95 x 69 2 mm3
voxels

* Mainly interested in left LPFC
— Results focus on 1 slice, but model is fully 3D

« RJ-MCMC run for 2,000 burn-in plus 10,000
iterations

— Acceptance rate for the population level birth/death
RJMCMC = 15%.

— 8 hours of CPU time on MAC 3.0 GHz Xserve
(21 hours for full 39-slice dataset)



Hyperprior Parameter Settings

Level 4. Observed data
— m = 19, most optimistic prior prob. of null 0.95
— A, = 25, prior mean # of individual components

Level 3: Individual Component
— A, = 25, prior mean # of individual centers

— Small individual components

« T4 = (5/3)I gives a priori 95% spherical confidence region
with radius 0.557 cm, volume 0.724 cm? (the size of a
Garbanzo bean).

Level 2: Individual Centers

— Larger spread of components about individual centers

« Ts = 5/3%2.5%)I gives a priori 95% spherical confidence
region )With radius 1.392 cm, volume 11.31 cm? (the size of a
walnut).

Level 1: Population Centers
— A, set for a priori mean # of population centers of 5



Population
Results

Bayesian fit
naturally ‘de-
noises’

Much richer

Interpretation

— Large
Intersubject
spread

— Precise
information
on
population
centers

Classical: No FWE or FDR 0.05 significance
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Population Result

* New insight into
heterogeneity

— “Population prevalence”
of activation

— At best, 60% of

subjects ~50% —_ |
studied had
non-zero ~60% | “
activation

~35%

60

D) Population Center Location

| |

E) Population Center Prevalence




Conclusions: Group fMRI

Group fMRI data exhibits incredible
heterogeneity

Mass univariate models only catch consistent
‘blurred together’ responses

Explicit modelling of spatial structure

— Provides rich interpretation of data

— Remarkably precise localization of population centers
Fully Bayesian model

— Never turn-key, but worth the effort!



Meta-Analysis for Neurolmaging

Coordinate-Based
Meta-Analysis

(CBMA)
\

Per-Study
Result

* Now 20,000+ neuroimaging,
including fMRI & PET studies g,

* Tiny sample sizes 1 7
e.g. median N of 13 (i~

 Methodology Study e
heterogeneous 2

* Neuroimaging Meta-Analysis Stt;dy

- |dentify consistent K )
results

* Discount idiosyncratic e e
c gy ntensity Base
findi n_gS . . Meta-Analysis

 Explain inter-study variation (IBMA)

Salimi-Khorshidi, Smith, Keltner, Wager, Nichols. (2009). Meta-analysis of neuroimaging data: A
comparison of image-based and coordinate-based pooling of studies. Neurolmage, 45(3), 810-823.



MEthOdS fOr (non-imaging) MEta'AnalyS|S (1)

* P-value (or Z-value) combining
— Fishers (= average —log P)
— Stouffers (= average 7)

— Used only as method of last resort
e Based on significance, not effects in real units
 Differing n will induce heterogeneity (cummings, 2004)

* Fixed effects model
— Requires effect estimates and standard errors
e E.g. Mean survival (days), and standard error of mean

— Gives weighted average of effects
 Weights based on per-study standard errors

— Neglects inter-study variation

Cummings (2004). Meta-analysis based on standardized effects is unreliable. Archives of Pediatrics & Adolescent
Medicine, 158(6), 595-7.



MEthOdS fOr (non-imaging) MEta'AnalyS|S (2)

e Random effects model
— Requires effect estimates and standard errors
— Gives weighted average of effect

* Weights based on per-study standard errors and
inter-study variation

— Accounts for inter-study variation

* Meta regression

— Account for study-level regressors

* E.g. year of publication, Impact Factor of journal, etc.

— Fixed or random effects



Neuroimaging Meta-Analysis:
Existing Approaches (1)

* |ntensity-Based Meta-Analysis (IBMA)
— With P/T/Z Images only

* Only allows Fishers/Stouffers

— With contrast/COPE’s only

* Only allows random-effects model without weights
— Can’t weight by sample size!

— With COPE’s & VARCOPES (contrasts & SE’s)

e FSL's FEAT/FLAME is the random effect meta model!
— 2"d-level FLAME: Combining subjects
— 3'd-level FLAME: Combining studies

* “Mega-Analysis” regression Best practice ©
— But image data rarely shared

Bad practice ®



Neuroimaging Meta-Analysis:
Existing Approaches (2)

Coordinate-Based Meta-Analysis (CBMA)
— X,Y,z locations only
 Activation Likelihood Estimation (ALE)

Turkeltaub et al. (2002). Meta-analysis of the functional neuroanatomy of single-word reading: method and
validation. Neurolmage, 16(3), 765—-780.

Eickhoff et al. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a

random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30(9), 2907-26.
Eickhoff et al. (2012). Activation likelihood estimation meta-analysis revisited. Neurolmage, 59(3), 2349-61

* Multilevel Kernel Density Analysis (MKDA)

Wager et al. (2004). Neuroimaging studies of shifting attention: a meta-analysis. Neurolmage 22 (4), 1679-1693.

Kober et al. (2008). Functional grouping and cortical-subcortical interactions in emotion: a meta-analysis of
neuroimaging studies. Neurolmage, 42(2), 998-1031.

— X,¥,z and Z-value
* Signed Difference Mapping (SDM)

Radua & Mataix-Cols (2009). Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder
British Journal of Psychiatry, 195:391-400.

Costafreda et al. (2009). A parametric approach to voxel- based meta-analysis. Neurolmage, 46(1):115-122.



Bayesian Spatial
Hierarchical Model

« CBMA still mass-univariate

— Can'’t explicitly account for spatial structure
» Only can detect spatially consistent effects
* No (useful) information on different degrees of spread

— Can’t model the way users actually think about the data
* True population location of effect
* Individual subjects/studies fall with some spread

« Bayesian Marked Cox Clustering Process...

— Joint with
« Tim Johnson, Jiang Kang, University of Michigan Biostatistics
« Tor Wager, Columbia University Psychology
» Lisa Feldman Barrett, Northeastern University & MGH

Kang, Johnson, Nichols, Wager (2011). Meta Analysis of Functional Neuroimaging
Data via Bayesian Spatial Point Processes. J. Am. Stat. Assoc. 106(493), 124-134.



3-Level Spatial

Hierarchy

“Population
Centers”
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Cox Cluster Process

* Poisson Process
— X ~ Poisson(Q,A) for
« Support Q CRd
* Nonnegative rate function A: Q - [0,)

— X € Q) countable random variable
— Forany SCQ, N,(S) is Poisson random variable, rate

H(S)= [sA(x)dx
» Cox Process
— X|A ~ Poisson(Q,A), random A

e Cox Cluster Process
— A takes specific form of
* A Y)=Z,eyf(-]y)

—e.9. Y ={(X,Y1,Z1), (X2,¥2,Z5), --- » }
location of latent activation centres



Cox Cluster Process with Marks

* Population Centres
— Marked latent process M-1Y)=e+Z oyf(-|y)

— Each y has mark, a 3x3
matrix 2 of inter-study spread

« Study Centres

— Location about which come observed foci

— If multiple foci in neighbourhood, model “intra-study”
spread
* If only one focus per apparent population center, then not

* Background intensity
— “Noise”, loci that don'’t cluster (rate €)

* Fully Bayesian model

— Posterior simulation with Spatial Birth-and-Death
Algorlthm (van Lieshout and Baddeley, 2002)



Example of CBMA Data

* Neuroimaging Studies of Emotion
— 164 studies
—Avg. nis 12 (4 < n <40)
— 2350 peaks In total

— Emotions studied: sad, happy, angry, fear,
disgust, surprise, affective and mixed

e GGoal

— Find regions of consistent emotion-induced
activations



Example of
CBMA Data

* X,Y,Z coord. In
MNI
(standard
atlas) space)

« Each study
has multiple
points

Foci from 1 study

| | ] | | | | |

I I I I I I I I

Foci from all 164 studies

Axial View Coronal View
(from atop head) (from behind head)




Example of
CBMA Data

* X,Y,Z coord. In
MNI
(standard
atlas) space)

« Each study
has multiple
points

* We focus on
amygdala

Foci from 1 study

| | ] | | | | |

I I I I I I I I

Foci from all 164 studies

Axial View Coronal View
(from atop head) (from behind head)




Posterior Fit & Comparison




Posterior Fit
* 95% credible ellipses
— Study-level centres (blue)
— Population centres (yellow)
— Amygdala voxels shorwn IN red (Harvard-oxford atias)

Allows clear distinction between
Estimation of inter-study spread of loci, and
Inference on location of population centre



Meta-Analysis Study Classification

* Fit Bayesian model separately 5 times

Sad Happy Anger Fear Disgust
Studies | 45 36 26 68 44

Foci 346 177 166 367 337

* Note, data very sparse

Foci per
Study 7.7 4.9 6.4 54 7.7

— This is a challenge, but
— Total counts informative of study type

* Can then predict one new (held-out) study



LOOCYV Classification Accuracy

Bayesian Spatial Point Process Model (0.83)

 Our model
— 83% avg.
— 69% worst

* GNB with
MKDA

—45% avqg.
— 0% worst

 Accurate
model

Truth Prediction
sad happy anger fear disgust
sad 0.78 0.00 0.11 0.04 0.07
happy 0.06 0.92 0.00 0.03 0.00
anger 0.08 0.08 0.69 0.15 0.00
fear 0.13 0.01 0.00 0.85 0.00
disgust 0.05 0.02 0.02 0.07 0.84

MKDA based Naive Bayes Classifier (0.45)

Truth Prediction
sad happy anger fear disgust
sad 0.38 0.11 0.07 0.40 0.04
happy 0.11 0.25 0.03 0.56 0.06
anger 0.12 0.23 0.00 0.50 0.15
fear 0.06 0.06 0.01 0.81 0.06
disgust 0.09 0.16 0.05 0.32 0.39

Chance Accuracy = 1/5=0.20



Conclusions: Meta Analysis

* Intensity-Based Mega Analysis (IBMA)
— Always preferred to use the original data

. CBMA with ALE/(M)KDA, etc

— Suffers from all limits of mass-univariate
modelling

« CBMA & detailed spatial hierarchical
model
— Much more interpretable model



Reverse Inference & Brain Imaging

 Politics study

— N=20 voters viewing images of candidates

 Voters who, a priori, disliked Hillary Clinton,
“exhibited significant activity in the anterior
cingulate cortex, an emotional center”..., activated
when one “feels compelled to act in two different
ways but must choose one.”

2. CLINTON

1. DEMOCRAT REPUBLICAN INDEPENDENT

Iacoboni, et al., “This is your brain on politics”. OP-ED, The New York Times, Nov. 11,2007



Reverse Inference & Brain Imaging

2. CLINTON

* Logic
— Emotion conflict resolution task
=>» Anterior Cingulate activation

— Hillary Clinton
=>» Anterior Cingulate

— Ergo
=>Hillary Clinton induces emotional conflict
=>» Faulty Reverse Inference

— High P(A.C. Act. | Emot. Conf. ) doesn’t imply
high P(Emot. Conf. | A.C. Act.) /Il

Iacoboni, et al., “This is your brain on politics”. OP-ED, The New York Times, Nov. 11,2007



Reverse Inference & Brain Imaging

* Bayes Rule
— P(E=¢€|A) = P(A|[E=e) P(E=e) /
2.« P(A|E=e*)P(E=e")
— Must sum over all possible “e*”, all different
possible types of experiments

» Can we find "P(Emot. Conf. | A.C. Act.)"?

— Would have to run 100’s of experiments!
— Or, use meta analysis!

— But best Neuroimaging Meta Analysis
databases are still limited
« BrainMap.org has 2155 studies (first in 1988)
 Pubmed finds 288,850 refs with “{MRI”



Neurosynth

A Term-based Related studies Automated coordinate Meta-analysis
search Mechanisms of Directed | extraction
An fMRI Investigation of I
o T Placebo-Induced Changes in fMRI X Y Z stUdy
Pain—=gp| ||  "icinemees |3y 23 18 45 —>
] EmmomnaMsLI 19 3 12 1
1 SSEErEsTEET -40 0 -16 1
H | SR 35 41 29 2
= 2 18 33 2
4393 studies (in < 12 months!) P(Painl Activation)
B  Forward inference Reverse inference
Paln Worklng Memory?
Emotion?
Pain?
o 4
C Classification
Worklng mem. Emotion

—>» “Pain”

P=78% P =64%

X
Select highest probability
Yarkoni, Poldrack, Nichols, Essen, & Wager (2011). Large-scale automated synthesis of

human functional neuroimaging data. Nature Methods, 8(8), 665-670. www.neurosynth.org



What about Anterior Cingulate?

e |t's Probability of activation over all studies

always
there!

* Finally, can do real reverse inference...



Working
Memory

Emotion

Previous meta-analyses

Automated meta-analysis

Forward Inference

Reverse Inference

(P(ActlTerm)) C (P(TermlAct))

0 P(ActlITerm 0.4

01 P(TermlAct) 0.9
[ I .




Final Conclusions

» Accurate Spatial Modelling
— Provide more interpretable models
— Better predictive performance

» Bayesian Spatial Models
— Not turn-key
— Answers questions mass univariate can't
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Thank you!



