Meta-analytic approaches to mapping the brain, its functions and connectivity

Simon Eickhoff

Institut für Neurowissenschaften und Medizin (INM-1)

mainval yein

HEINRICH HEINE UNIVERSITÄT DÜSSELDORF

Institut für klinische Neurowissenschaften

Background

Why meta-analytic approaches?

Limitation of neuroimaging data

Small samples

Compared to other fields of cognitive and social science and particularly to clinical research

Indirect measures of neuronal activity

Reliability is limited by biological, technical and methodological confounds

Publication of isolated findings

Due to logistic expenses, additional experiments for confirmation and extension are rare

Generalisation of context-specific findings

Inference on brain function and pathomechanisms is based on a specific observed difference between two conditions

Advantages of neuroimagig data

|--|

There are many studies

Recent estimate

14.000 fMRT and PET Paper

>1200 Articles on Schizophrenia, Depression und Autism

All report standardised results!

Year	# of hits
1991-1995	57
1996	57
1997	85
1998	183
1999	263
2000	379
2001	497
2002	573
2003	770
2004	964
2005	1245
2006	1369
2007	1466
Total	7908
	Derrfuss & Mar 2009

Image based meta analyses

Mega-analysesjointly analyze the raw data of all experimentsMulti-Study ConjunctionsOverlap between significant effectsThird-level analysesStatistical test on the between-experiment effects

Compilation of original data rarely feasible, usually accompanied with strong biases

Coordinate based meta-analyses

Based on published maxima-coordinates

Sparse representation of results

May integrate the entire literature

The "where" approach Meta-Analyses

Activation likelihood estimation (ALE)

189 neuroimaging experiments on working memory

Location of activation foci

Where do these foci converge ?

Activation likelihood estimation (ALE)

The reported coordinates are not treated as points but centres of probability distributions

The "true" location of each reported activation is modelled by a 3D Gaussian

Empirical model of spatial uncertainty associated with neuroimaging data FWHM

X

Activation likelihood estimation (ALE)

ALE defined by the union over all experiments

Which of these values are significant?

Permutation procedure testing nullhypothesis of random spatial association

> Eickhoff et al., Hum Brain Mapp 2009 Eickhoff et al., Neuroimage 2012

Meta-analytic contrasts

Where is the convergence for set A higher than for set B

Is A more likely to result in activation at this voxel than B?

n-back vs. Sternberg

The choice of task may bias your results !

Rottschy et al., Neuroimage 2012

The "what" approach Functional characterization

The problem of functional inference

The BrainMap database

BrainMap Paradigm Classes

Action Observation Acupuncture Anti-Saccades **Braille Reading Breath-Holding Classical Conditioning Counting/Calculation Cued Explicit Recognition** Deception Task **Deductive Reasoning Delayed Match to Sample** Divided Auditory Attention Drawing Eating Encodina Episodic Recall Face Monitor/Discrimination Film Viewing Finger Tapping Fixation Flanker Task Flashing Checkerboard Flexion/Extenion Free Word List Recall Go/No-Go Grasping Imagined Movement Imagined Objects/Scenes **Isometric Force** Mental Rotation Micturition Task Music Comprehension/Production n-back Naming (Covert) Naming (Overt) Non-Painful Electrical Stimulation Non-Painful Thermal Stimulation Oddball Discrimination

Olfactory Monitor/Discrimination Orthographic Discrimination Pain Monitor/Discrimination Paired Associate Recall Passive Listening Passive Viewing **Phonological Discrimination** Pitch Monitor/Discrimination Pointina Posner Task Reading (Covert) Reading (Overt) **Recitation/Repetition (Covert) Recitation/Repetition (Overt)** Rest Reward Task Saccades Semantic Discrimination Sequence Recall/Learning Simon Task Spatial/Location Discrimination Sternberg Task Stroop Task Syntactic Discrimination Tactile Monitor/Discrimination Task Switching Theory of Mind Task **Tone Monitor/Discrimination Transcranial Magnetic Stimulation** Vibrotactile Monitor/Discrimination Visual Distractor/Visual Attention Visual Pursuit/Tracking Wisconsin Card Sorting Test Word Generation (Covert) Word Generation (Overt) Word Stem Completion (Covert) Word Stem Completion (Overt) Writing

BrainMap Behavioral Domains

Action Execution Speech Imagination Inhibition Motor Learning Observation Preparation Rest Cognition Attention Language Orthography Phonology Semantics Speech Syntax Memory Explicit Implicit Working Music Reasoning Soma Space Time

Emotion Anger Anxiety Disgust Fear Happiness Humor Sadness Interoception Air-Hunger Baroregulation Bladder Hunger Osmoregulation Sexuality Sleep Thermoregulation Thirst

Perception Audition Gustation Olfaction Somesthesis Pain Vision Color Motion Shape Pharmacology Alcohol

Alcohol Amphetamines Caffeine Capsaicin Cocaine Ketamine Marijuana Nicotine NSAIDs Psychiatric Medications Anti-Depressants Anti-Psychotics Steroids and Hormones

Forward inference

How likely is a particular type of experiments to activate this region?

Identify all experiments in BrainMap that activate in the ROI

222 Experiments in BrainMap (2944 subjects, 3445 foci)

Proportion of experiments from domain X activating ROI vs. a priori probability of activating ROI

Were experiments of a given domain more likely to activate this ROI than chance? Is the number of activations higher than expected?

Reverse inference

How likely was a particular domain present when the ROI activates?

Inference on domain-specificity

Decoding of functional recruitment

Depends on forward probability and baserate of the domain $P(Domain|Activation) = \frac{P(Activation|Domain) * P(Domain)}{P(Activation)}$

Dependent on the a priori probability for the given domain

168 experiments reported activation in left M1

Probability for probability c

Fd

Forward inference

P(Activation | Task)

168 experiments reported activation in left M1

P(Domain|Activation

Depends on forwa

Reverse inference

P(Task | Activation)

The "with whom" approach Meta-Analytic Connectivity Modelling

Meta-analytic connectivity modeling

The ~2431 activation foci reported in the 168 experiments activating left M1

Experiments are only identified by the fact that they feature activation in the seed

Meta-analytic connectivity modeling

Activation likelihood estimation for each voxel based on uncertainty associated with each focus

Probabilistic representation of co-activations

How likely is it that experiment activating the seed region also activates any other voxel

Meta-analytic connectivity modeling

Activation likelihood estimation for each voxel based on uncertainty associated with each focus

Probabilistic representation of co-activations

How likely is it that experiment activating the seed region also activates any other voxel

Co-activation of left M1

Meta-Analysis on finger tapping (73 experiments)

fMRI study on finger tapping (21 subjects)

Fusion

Meta-analytic Brain Mapping

Co-activation based parcellation

Cortical regions show distinct connectivity-profiles

Computation of each voxel's interactions Clustering based on these profiles

Eickhoff, Bzdok, Laird, Roski, Caspers, Zilles, Fox; Neuroimage 2011

BrainMap Database

12.000 Neuroimaging experiments

- Coordinates for local maxima
- Meta-Data on tasks etc

Approach (per voxel)

Identification of all experiments featuring activation at that voxel

Computation of across-experiment convergence of co-activations accommodating spatial uncertainty

Eickhoff, Bzdok, Laird, Kurth, Fox; Neuroimage 2012

Cieslik, Zilles, Caspers, Roski, Kellermann, Jakobs, Langner, Laird, Fox, Eickhoff, Cerebal Cortex. ePub 2012

Co-activation based parcellation

Whole-brain connectivity per voxel

Computation of cross-correlation the co-activation patterns

Identify groups via multivariate cluster-analyses

Eickhoff, Bzdok, Laird, Roski, Caspers, Zilles, Fox; Neuroimage 2011

Cieslik, Zilles, Caspers, Roski, Kellermann, Jakobs, Langner, Laird, Fox, Eickhoff, Cerebal Cortex. ePub 2012

Cieslik, Zilles, Caspers, Roski, Kellermann, Jakobs, Langner, Laird, Fox, Eickhoff, Cerebal Cortex. ePub 2012

The present and future of MACM-CBP

Mapping cortical segregation, connectivity and functions

Quantitative evaluation of each parameter

Clos et al., Neuroimage in revision

Insight from each individual neuroimaging study is limited by inherent drawbacks

High degree of standardization pooling of results allows inference on converging evidence

Coordinate-based meta-analyses provide a statistical tool for the objective integration of findings

Database driven functional decoding allows objective forward and reverse inference

Meta-analytic connectivity modelling offers a new approach to task-based functional connectivity

Co-activation based parcellation enables to identify cortical modules in a data-driven fashion

Sarah Altunbas Maren Amft Jennifer Birke Danilo Bzdok Julia Camilieri Edna Cieslik Sophie Doose Sarah Genon Adrian Heeger Lukas Hensel Yvonne Höhner Felix Hoffstaedter Ben Korman Robert Langner Veronika Müller Rachel Pläschke Claudia Rottschy Isabelle Seidler

Düsseldorf Katrin Amunts Alfons Schnitzler Karl **Zilles** Köln **Christian Grefkes** Leo Schilbach Kai Vogeley Mainz Peter Eulenburg Aachen Frank Schneider Birgit Derntl Kathrin Reetz Göttingen **Oliver Gruber TU München** Valentin Riedl Paris Gael Varoquaux Stanford Amit Etkin Yale David Glahn

Kopenhagen Hartwig Siebner Zürich Josh Balster Oxford Tim E. Behrens Steve M Smith San Antonio Peter T. Fox Angela R. Laird Pittsburgh Henry Chase Detroit Vaibhay Diwadkar Utrecht Iris Sommer Groningen Andre Aleman Lille Renaud Jardri Philadelphia Ruben Gur Ted Satterthwaite