Skip to main content Skip to navigation

Publications RSS

• Electrochemical Synthesis of Nanoporous Platinum Nanoparticles Using Laser Pulse Heating: Application to Methanol Oxidation

Nanoporous platinum nanoparticles (NPs) have been proposed as promising electrocatalytic materials. Routes to produce them typically consist of chemical synthesis or selective dissolution of one component of a two-component mix. Here we show that by employing a pulsed laser heating approach during electrodeposition, whereby the electrode/electrolyte interface is continually heated and cooled, NPs with a nanoporous structure can be grown directly on the electrode (boron-doped diamond) surface. Transmission electron microscopy shows the NPs to be composed of loosely packed aggregates of much smaller crystalline particles of size 2–5 nm, with the porosity increasing with increasing deposition overpotential. In contrast, electrodeposition at room temperature (RT) results in particles which show a considerably more compact morphology and fewer higher index crystal facets, as revealed by electron diffraction techniques. Pulsed heating also offers a route toward controlling the monodispersity of the electrodeposited NPs. When applied to the oxidation of methanol, the laser-heated NPs show considerably higher catalytic current densities in comparison to RT-deposited particles. The highest catalytic activity is observed for the most porous NPs produced at the highest overpotential. Interestingly, the ratio of the forward oxidative current to the backward current is highest for those particles deposited under laser-heated conditions but with the smallest overpotential. This suggests that the most catalytically active NPs may also encourage binding of residual adsorbed carbon monoxide and that a compromise must be reached.

Fri 06 Oct 2017, 17:03

• Simultaneous Topography and Reaction Flux Mapping at and around Electrocatalytic Nanoparticles

The characterization of electrocatalytic reactions at individual nanoparticles (NPs) is presently of considerable interest but very challenging. Herein, we demonstrate how simple-to-fabricate nanopipette probes with diameters of approximately 30 nm can be deployed in a scanning ion conductance microscopy (SICM) platform to simultaneously visualize electrochemical reactivity and topography with high spatial resolution at electrochemical interfaces. By employing a self-referencing hopping mode protocol, whereby the probe is brought from bulk solution to the near-surface at each pixel, and with potential-time control applied at the substrate, current measurements at the nanopipette can be made with high precision and resolution (30 nm resolution, 2600 pixels μm–2, <0.3 s pixel−1) to reveal a wealth of information on the substrate physicochemical properties. This methodology has been applied to image the electrocatalytic oxidation of borohydride at ensembles of AuNPs on a carbon fiber support in alkaline media, whereby the depletion of hydroxide ions and release of water during the reaction results in a detectable change in the ionic composition around the NPs. Through the use of finite element method simulations, these observations are validated and analyzed to reveal important information on heterogeneities in ion flux between the top of a NP and the gap at the NP-support contact, diffusional overlap and competition for reactant between neighboring NPs, and differences in NP activity. These studies highlight key issues that influence the behavior of NP assemblies at the single NP level and provide a platform for the use of SICM as an important tool for electrocatalysis studies.

Fri 06 Oct 2017, 17:03

• Dissolution of Bicalutamide Single Crystals in Aqueous Solution: Significance of Evolving Topography in Accelerating Face-Specific Kinetics

The dissolution kinetics of individual microscale bicalutamide (BIC) form-I crystals are tracked over time using in situ atomic force microscopy (AFM), with the evolution of crystal morphology used to obtain quantitative data on dissolution kinetics via finite element method (FEM) modeling of the dissolution reaction-diffusion problem. Dissolution is found to involve pit formation and roughening on all dissolving surfaces of the BIC crystal, and this has a strong influence on the overall dissolution process and kinetics. While all of the exposed faces (100), {051}, and {1̅02} show dissolution kinetics that are largely surface-kinetic controlled, each face has an intrinsic dissolution characteristic that depends on the degree of hydrogen bonding with aqueous solution, with hydrogen bonding promoting faster dissolution. Moreover, as dissolution proceeds with pitting and roughening, the rate accelerates considerably, so that there is an increasing diffusion contribution. Such insight is important in understanding the oral administration of poorly soluble active pharmaceutical ingredients (APIs) in crystal form. Evidently, surface roughening and defects greatly enhance dissolution kinetics, but the evolving crystal topography during dissolution leads to complex time-dependent kinetics that are important for modeling and understanding API release rates.

Fri 06 Oct 2017, 17:02

• Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS2): basal vs. edge plane activity

Two dimensional (2D) semiconductor materials, such as molybdenum disulfide (MoS2) have attracted considerable interest in a range of chemical and electrochemical applications, for example, as an abundant and low-cost alternative electrocatalyst to platinum for the hydrogen evolution reaction (HER). While it has been proposed that the edge plane of MoS2 possesses high catalytic activity for the HER relative to the “catalytically inert” basal plane, this conclusion has been drawn mainly from macroscale electrochemical (voltammetric) measurements, which reflect the “average” electrocatalytic behavior of complex electrode ensembles. In this work, we report the first spatially-resolved measurements of HER activity on natural crystals of molybdenite, achieved using voltammetric scanning electrochemical cell microscopy (SECCM), whereby pixel-resolved linear-sweep voltammogram (LSV) measurements have allowed the HER to be visualized at multiple different potentials to construct electrochemical flux movies with nanoscale resolution. Key features of the SECCM technique are that characteristic surface sites can be targeted and analyzed in detail and, further, that the electrocatalyst area is known with good precision (in contrast to many macroscale measurements on supported catalysts). Through correlation of the local voltammetric response with information from scanning electron microscopy (SEM) and atomic force microscopy (AFM) in a multi-microscopy approach, it is demonstrated unequivocally that while the basal plane of bulk MoS2 (2H crystal phase) possesses significant activity, the HER is greatly facilitated at the edge plane (e.g., surface defects such as steps, edges or crevices). Semi-quantitative treatment of the voltammetric data reveals that the HER at the basal plane of MoS2 has a Tafel slope and exchange current density (J0) of ∼120 mV per decade and 2.5 × 10−6 A cm−2 (comparable to polycrystalline Co, Ni, Cu and Au), respectively, while the edge plane has a comparable Tafel slope and a J0 that is estimated to be more than an order-of-magnitude larger (∼1 × 10−4 A cm−2). Finally, by tracking the temporal evolution of water contact angle (WCA) after cleavage, it is shown that cathodic polarization has a ‘self-cleaning’ effect on the surface of MoS2, consistent with the time-independent (i.e., time after cleavage) HER voltammetric response.

Fri 06 Oct 2017, 17:01

• Tracking the dissolution of calcite single crystals in acid waters: a simple method for measuring fast surface kinetics

Although the dissolution kinetics of calcite in acid waters has been studied for more than a century, the process is not fully understood, and for particles and microcrystals the process is often assumed to be diffusion-controlled. Herein, the dissolution kinetics of calcite single microcrystals in aqueous solution (pH ca. 3) has been investigated for the first time by a combination of real-time optical microscopy coupled with numerical simulations. The small size and well-defined geometry of rhombohedral calcite single crystals enables the measurement of the dissolution rates of the individual crystal faces exposed to the solvent and an assessment of the relative importance of corners and edges compared to the {104} faces. Data are used to parameterise finite element method (FEM) models for the quantitative analysis of dissolution kinetics. The simulations provide an accurate determination of the near-interface concentration of solution species during dissolution, as well as concentration gradients. The intrinsic first-order dissolution rate constant for the attack of protons on the exposed {104} faces, ksurf = (6.4 ± 2.8) × 10−4 m s−1, is in good agreement with previous microscopic and macroscopic measurements, corroborating the method. This study is a further demonstration of the power of simple in situ optical microscopy for quantitative interfacial (dissolution/growth) kinetic measurements, using a configuration of practical relevance for processes as diverse as the remediation of acid water and scale removal.

Thu 29 Jun 2017, 16:50

• Fabrication of a single sub-micron pore spanning a single crystal (100) diamond membrane and impact on particle translocation

Fabrication of sub-micron (meso)pores in single crystal diamond membranes, which span the entirety of the membrane, is described for the first time, and the translocation properties of polymeric particles through the pore investigated. The pores are produced using a combination of laser micromachining to form the membrane and electron beam induced etching to form the pore. Single crystal diamond as the membrane material, has the advantages of chemical stability and durability, does not hydrate and swell, has outstanding electrical properties that facilitate fast, low noise current-time measurements and is optically transparent for combined optical-conductance sensing. The resulting pores are characterized individually using both conductance measurements, employing a microcapillary electrochemical setup, and electron microscopy. Proof-of-concept experiments to sense charged polystyrene particles as they are electrophoretically driven through a single diamond pore are performed, and the impact of this new pore material on particle translocation is explored. These findings reveal the potential of diamond as a platform for pore-based sensing technologies and pave the way for the fabrication of single nanopores which span the entirety of a diamond membrane.

Thu 29 Jun 2017, 16:49

Latest news Newer news Older news