QM/MM Coupling for Crystalline Defects

Huajie Chen

Mathematics Institute, University of Warwick

Joint work with Christoph Ortner (Warwick), Faizan Nazar (Warwick), James Kermode (Warwick), Gabor Csànyi (Cambridge), Noam Bernstein (NRL)

Multiscale Methods for Improved Interatomic Potentials, 22 June 2016, Warwick
QM/MM coupling

Low speed fracture in a brittle crystal [Kermode, Albaret, Sherman, Bernstein, Gumbsch, Payne, Csányi, De Vita, Nature, 2008]

- **QM** (quantum mechanic): DFT, Hartree-Fock, QMC, Tight-binding ...
- **MM** (molecular mechanic): Lennard-Jones, EAM, Gupta ...
Quantum mechanical models

Tight-binding (TB): the minimal electronic structure model
Outline

- Strong Locality of Tight-Binding
- An Energy-Based QM/MM Scheme
Consider a system with N atoms $y = (y_1, \cdots, y_N) \in (\mathbb{R}^d)^N$.

$$E(y) = ?$$
Tight-Binding total energy

Consider a system with N atoms $y = (y_1, \cdots, y_N) \in (\mathbb{R}^d)^N$.

$E(y) = ?$

1. Construct a Hamiltonian matrix $H(y) \in \mathbb{R}^{N \times N}$

$$H_{\ell k}(y) = h(y_\ell - y_k)$$

with some empirical potential h.

2. Solve the matrix eigenvalue problem

$$H(y)\psi_s = \varepsilon_s \psi_s \quad s = 1, 2, \cdots$$

3. Calculate the Tight-binding (QM) energy

$$E(y) = \sum_s \varepsilon_s \cdot f(\varepsilon_s)$$

with $f(\varepsilon_s) = \left(1 + \exp[\beta(\varepsilon_s - \mu)]\right)^{-1}$ (smeared step function)
Tight-Binding site energy

\[E(y) = \sum_{s=1}^{N} \epsilon_s f(\epsilon_s) \]
Tight-Binding site energy

\[E(y) = \sum_{s=1}^{N} \varepsilon_s f(\varepsilon_s) \left\| \psi_s \right\|_2^2 \]

\[\psi_s = \left([\psi_s]_1, \cdots, [\psi_s]_\ell, \cdots, [\psi_s]_N \right) \text{ where } [\psi_s]_\ell \text{ relates to the } \ell \text{th atom} \]

\[= \sum_{s=1}^{N} \varepsilon_s f(\varepsilon_s) \sum_{\ell=1}^{N} [\psi_s]_\ell^2 \]

\[= \sum_{\ell=1}^{N} \sum_{s=1}^{N} \varepsilon_s f(\varepsilon_s) [\psi_s]_\ell^2 \quad =: \sum_{\ell=1}^{N} E_\ell(y) \]

where \(E_\ell(y) = \sum_{s=1}^{N} \varepsilon_s f(\varepsilon_s) [\psi_s]_\ell^2 \)
A tight-binding toy model: Hamiltonian

\[H_{ij} = h(|y_i - y_j|) \quad \text{with} \quad h(r) = e^{-2\alpha(r-r_0)} - 2e^{-\alpha(r-r_0)}. \]

\[H = \begin{bmatrix}
0 & -1 & -0.225 \\
-1 & 0 & -0.225 \\
-0.225 & -0.225 & 0
\end{bmatrix} \]
A tight-binding toy model: Site energy

Solve the matrix eigenvalue problem

\[H \psi_s = \varepsilon_s \psi_s \quad s = 1, 2, 3 \]

We have

\[\varepsilon_1 = -1.1 \quad \psi_1 = [0.68, 0.68, 0.28] \]

\[\varepsilon_2 = 0.1 \quad \psi_2 = [-0.19, -0.19, 0.96] \]

\[\varepsilon_3 = 0.0 \quad \psi_3 = [0.71, -0.71, 0.0] \]

Then \[E = \varepsilon_1 + \varepsilon_2 + \varepsilon_3 \]
A tight-binding toy model: Site energy

Solve the matrix eigenvalue problem

\[H \psi_s = \varepsilon_s \psi_s \quad s = 1, 2, 3 \]

We have

\[\varepsilon_1 = -1.1 \quad \psi_1 = [0.68, 0.68, 0.28] \]
\[\varepsilon_2 = 0.1 \quad \psi_2 = [-0.19, -0.19, 0.96] \]
\[\varepsilon_3 = 0.0 \quad \psi_3 = [0.71, -0.71, 0.0] \]

Then \[E = \varepsilon_1 + \varepsilon_2 + \varepsilon_3 = E_1 + E_2 + E_3 \]

with

\[E_1 = -0.50 \quad E_2 = -0.50 \quad E_3 = 0.01 \]
QM Vs. MM

- MM potential is local: Range of potential $\leq R_{\text{cut}}$

$$E_{\ell}^{\text{MM}}(y) = E_{\ell}^{\text{MM}}(\{y_k, |y_k - y_\ell| \leq R_{\text{cut}}\})$$

- QM does not calculate energy per atom

Does $E_{\ell}^{\text{QM}}(y)$ have similar locality?
Theorem (Strong locality) [HC & Ortner 2015]

Assume that $H(y)$ is local:

$$|H_{\ell k}(y)| \lesssim e^{-cr_{\ell k}}, \quad \left| \frac{\partial H_{\ell k}(y)}{\partial y_m} \right| \lesssim e^{-c(r_{\ell m} + r_{km})}, \quad \partial^k H$$

then

$$\left| \frac{\partial E_\ell(y)}{\partial y_m} \right| \lesssim e^{-\gamma_1 r_{\ell m}}, \quad \left| \frac{\partial^2 E_\ell(y)}{\partial y_m \partial y_n} \right| \lesssim e^{-\gamma_2 (r_{\ell m} + r_{\ell n})}, \quad \partial^k E_\ell$$

- establish a bridge between QM and MM models
- required by QM/MM coupling [Csányi et al 2005]
Other QM models

- orbital-free DFT with Coulomb [Nazar & Ortner 2015]

- reduced Hartree-Fock with Yukawa [HC & Nazar & Ortner 2016]

- with long-range Coulomb potential, \(|\partial_{ym} H_{\ell k}| \lesssim (r_{\ell m}^{-2} + r_{km}^{-2}) e^{-\gamma r_{\ell k}} \),

we can only get \(|\partial_{ym} E_{\ell}(y)| \lesssim r_{\ell m}^{-2} \)
Numerical tests of a toy model

- 2D triangle lattice
- Left: perturb each position
- Right: remove some random lattice sites and perturb the remaining positions
Numerical tests of a toy model

- 2D triangle lattice
- \(H_{\ell k}(y) = h(|y_\ell - y_k|) \)
 with
 \[
 h(r) = \left(e^{-2\alpha(r-r_0)} - 2e^{-\alpha(r-r_0)} \right) f_{\text{cut}}(r)
 \]
- \(\cdot \) : perturb each position
- \(\times \) : remove some random lattice sites and perturb the remaining positions
Outline

- Strong Locality of Tight-Binding
- An Energy-Based QM/MM Scheme
An energy-based QM/MM coupling

Energy functional:

\[E^H(y) = E_{QM} + E_{MM} = \sum_{\ell \in QM} E_{QM}^\ell(y) + \sum_{\ell \in MM} E_{MM}^\ell(y) \]

Equilibrium state:

\[\bar{y} = \arg \min_y \{ E^H(y) \} \]

- MM potentials are taken off-the shelf, not matched to QM model
- Accuracy of the QM/MM method and its convergence with respect to possible parameters?
Test of principle: a vacancy in 2D triangular lattice

- Reference configuration:
 \[\Lambda = s \begin{pmatrix} 1 & 1/2 \\ 0 & \sqrt{3}/2 \end{pmatrix} \mathbb{Z}^d \setminus \{0\} \]

- Displacement \(u : \Lambda \to \mathbb{R}^d \)

- \(y = y_0 + u \)
 with \(y_0(\ell) = \ell \ \forall \ \ell \in \Lambda \)
Energy difference functional and decay estimates

Only the energy-difference is meaningful

\[E(u) = \sum_{\ell \in \Lambda} \left(E_\ell(y_0 + u) - E_\ell(y_0) \right) := \sum_{\ell \in \Lambda} E_\ell(u) \]

\[E(u) \] is well defined on some energy space \(U^{1,2} \) and

\[E \in C^k(U^{1,2}) \]

far-field structure of the minimizer

\[\bar{u} \in \text{arg min}\{ E(u) \mid u \in U^{1,2} \} \]

\[|\nabla \bar{u}(x)| \lesssim |x|^{-d} \]

[Ehrlacher & Ortner & Shapeev 2013] and [HC & Nazar & Ortner 2016]
Decomposition of reference configuration

Decomposition $\Lambda = \Lambda^{QM} \cup \Lambda^{MM} \cup \Lambda^{FF}$ with parameters R^{QM}, R^{BUF}, R^{MM}
Construction of MM potential

MM site potential
(Taylor’s expansion of TB site energy on reference configuration)

\[
\mathcal{E}_\ell^{MM}(u) = \mathcal{E}_\ell^{buf}(0) + u^T \nabla \mathcal{E}_\ell^{buf}(0) + \frac{1}{2} u^T \nabla^2 \mathcal{E}_\ell^{buf}(0) u + \cdots
\]

- \(\mathcal{E}_\ell^{buf}\) = Tight-Binding site energy difference in \(B_{R_{buf}}(\ell)\)

- Error can be controlled since \(|\nabla \bar{u}(x)| \lesssim |x|^{-d}||

- 2nd expansion for point defects (minimal requirement)
Convergence of energy-mixing

\[
\mathcal{E}^H(u) = \sum_{\ell \in \Lambda^{QM}} \mathcal{E}^\text{buf}_\ell (u) + \sum_{\ell \in \Lambda^{MM}} \mathcal{E}^\text{MM}_\ell (u) := \mathcal{E}^{QM} + \mathcal{E}^{MM}
\]

\[
\bar{u}^H \in \arg\min \left\{ \mathcal{E}^H(v) \mid v = 0 \text{ in } \Lambda^{FF} \right\}
\]

Theorem (Convergence rates) [HC & Ortner 2015]

Let \(\bar{u} \) be a strongly stable minimiser of \(\mathcal{E} \). Then for \(R^{QM} \) sufficiently large, there exists a strongly stable minimiser \(\bar{u}^H \) of \(\mathcal{E}^H \) such that

\[
\|\nabla \bar{u} - \nabla \bar{u}^H\|_{L^2} \leq C \left((R^{QM})^{-3d/2} + (R^{MM})^{-d/2} + e^{-\gamma R^{\text{buf}}} \right),
\]

\[
|\mathcal{E}(\bar{u}) - \mathcal{E}^H(\bar{u}^H)| \leq C \left((R^{QM})^{-2d} + (R^{MM})^{-d} + e^{-\gamma R^{\text{buf}}} \right).
\]

Balance the errors: \(R^{\text{buf}} \approx c \log R^{QM} \), \(R^{MM} \approx (R^{QM})^3 \) or \(R^{MM} \approx (R^{QM})^2 \)
Numerical tests

Vacancy in 2D triangular lattice, using a toy TB model.
Concluding remarks

- Decomposition of TB total energy into contributions from individual sites. Proof of locality of these contributions.

- New approaches to QM/MM coupling. **Key point:** do not use black-box potentials, but construct a potential specifically for good coupling with the QM model!

- Analogous constructions and error estimates for force-based QM/MM coupling.

- For dislocations, one has to use higher order expansion for the MM site energy construction.
References

Thank you for your attention!