Professor Alicia Hidalgo
Supervisor Details
Research Interests
Our lab aims to understand how the nervous system is formed, and how it works. Structure and function come together in the course of development, and influence each other throughout life, endowing the nervous system with plasticity. As the animal grows and nervous system volume and cell number increase, the two cell types in the nervous system - neurons and glial cells - make adjustments that modify migration patterns, axonal trajectories, cell division and cell survival. These plastic adjustments result in the robust, reproducible formation of the nervous system across individuals, and over evolutionary time. Conversely, these cell interactions fail in diseases of the nervous system and brain (e.g. neurodegenerative diseases, psychiatric disorders and brain tumours) and upon injury (e.g. upon spinal cord injury and stroke).
We use the fruit-fly Drosophila because it is a very powerful model organism to address questions swiftly, in vivo and with single cell resolution. Our approach combines genetics, molecular biology, cell culture, computational analysis and in vivo confocal microscopy in fixed specimens and in time-lapse. We collaborate with biochemists (Prof. N.J. Gay, Cambridge), electrophysiologists (Dr I. Robinson, Plymouth) and experts using mice and rats as model organisms (Prof. A. Logan, IBR Birmingham and Dr F. Matsuzaki, Riken, Japan).
MIBTP Project Details
Current Projects (2025-26)
Primary supervisor for:
Co-supervisor on a project with Dr Carolina Rezaval.
Previous Projects (2024-25)
Primary supervisor for:
Previous Projects (2023-24)
Primary supervisor for: