Skip to main content Skip to navigation


Imaging technologies play a big part in quantitative approaches to biology. The two main drivers in this rapidly evolving field are fluorescent probes to label and image cellular constituents in live cells, and computerised, fast, and high-resolution microscopes. Warwick’s Advanced Imaging Research Techology Platform provides access to state-of-the-art light-sheet microscopy, enabling ultra-fast 3D optical sectioning of live specimen. Researchers at Warwick Medical School are at the forefront of developing novel superresolution and single molecule microscopy techniques.

At the Zeeman Institute research in imaging focuses on:

  • Automated image analysis of complex time series data obtained by live cell fluorescence microscopy
  • Fitting of mathematical and biophysical models to image data in order to investigate non-linear cellular dynamics
Biological problems range from single cells to tissues, and include work on:
  • Cell movement
  • Cell membrane dynamics
  • Oscillatory dynamics of transcription factors
  • Mechanics of cell division
  • Development
  • Mechanics and signal propagation in tissues
  • Neurophysiology

We develop software which is made available to the biomedical research community:
  • QuimP: Measuring fluorescent signals at the membrane of moving cells
  • LineageTracker: Tracking cell nuclei in large populations of cells, assembly of cell lineages
  • CellTracker: Measuring nucleocytoplasmic translocations of transcription factors
  • KiT: Kinetochore tracking

People involved in imaging research at the Zeeman Institute, with selected publications:

Till Bretschneider

Image based modeling of bleb site selection.
Collier S, Paschke P, Kay RR, Bretschneider T.
Sci Rep. 2017 Jul 27;7(1):6692. doi: 10.1038/s41598-017-06875-9.
Lockley R, Ladds G, Bretschneider T.
Cytometry A. 2015 Jun;87(6):471-80. doi: 10.1002/cyto.a.22600.
Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle.Feillet C, Krusche P, Tamanini F, Janssens RC, Downey MJ, Martin P, Teboul M, Saito S, Lévi FA, Bretschneider T, van der Horst GT, Delaunay F, Rand DA.Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9828-33. doi: 10.1073/pnas.1320474111.
Zatulovskiy E, Tyson R, Bretschneider T, Kay RR.
J Cell Biol. 2014 Mar 17;204(6):1027-44. doi: 10.1083/jcb.201306147.

Nigel Burroughs

Smith CA, McAinsh AD, Burroughs NJ.
Elife. 2016 Sep 3;5. pii: e16159. doi: 10.7554/eLife.16159.
Armond JW, Harry EF, McAinsh AD, Burroughs NJ.
PLoS Comput Biol. 2015 Nov 30;11(11):e1004607
Burroughs NJ, Harry EF, McAinsh AD.
Elife. 2015 Oct 13;4. pii: e09500. doi: 10.7554/eLife.09500.

Magnus Richardson

Loftus FC, Richardson MJ, Shmygol A.
J Biomech. 2015 Jun 25;48(9):1620-4. doi: 10.1016/j.jbiomech.2015.01.046.


Piotr Baniukiewicz, Sharon Collier, Till Bretschneider
BioRxiv 1st Aug 2017. doi:
Armond JW, Vladimirou E, McAinsh AD, Burroughs NJ.
Bioinformatics. 2016 Jun 15;32(12):1917-9. doi: 10.1093/bioinformatics/btw087.
Loftus FC, Shmygol A, Richardson MJ.
J Physiol. 2014 Oct 15;592(20):4447-63. doi: 10.1113/jphysiol.2014.275412.
Du CJ, Hawkins PT, Stephens LR, Bretschneider T.
BMC Bioinformatics. 2013 Oct 4;14:296. doi: 10.1186/1471-2105-14-296.