Skip to main content Skip to navigation

Recent Publications Feed (ADMIN)

  1. Insert code for bullet point before paper title - • - and insert a space
  2. COPY AND PASTE full title into the title field
  3. In abstract tab insert authors names, year, journal, pages
  4. In tag box insert authors names separated by a comma

 

• Electrochemical Impedance Measurements in Scanning Ion Conductance Microscopy

Electrochemical impedance spectroscopy (EIS) is a versatile tool for electrochemistry, particularly when applied locally to reveal the properties and dynamics of heterogeneous interfaces. A new method to generate local electrochemical impedance spectra is outlined, by applying a harmonic bias between a quasi-reference counter electrode (QRCE) placed in a nanopipet tip of a scanning ion conductance microscope (SICM) and a conductive (working electrode) substrate (two-electrode setup). The AC frequency can be tuned so that the magnitude of the impedance is sensitive to the tip-to-substrate distance, whereas the phase angle is broadly defined by the local capacitive response of the electrical double layer (EDL) of the working electrode. This development enables the surface topography and the local capacitance to be sensed reliably, and separately, in a single measurement. Further, self-referencing the probe impedance near the surface to that in the bulk solution allows the local capacitive response of the working electrode substrate in the overall AC signal to be determined, establishing a quantitative footing for the methodology. The spatial resolution of AC-SICM is an order of magnitude larger than the tip size (100 nm radius), for the studies herein, due to frequency dispersion. Comprehensive finite element method (FEM) modeling is undertaken to optimize the experimental conditions and minimize the experimental artifacts originating from the frequency dispersion phenomenon, and provides an avenue to explore the means by which the spatial resolution could be further improved.

Fri 04 Sept 2020, 09:22

• Ex-vivo Electrochemical pH Mapping of the Gastrointestinal Tract in the Absence and Presence of Pharmacological Agents

Ex-vivo pH profiling of the upper gastrointestinal (GI) tract (of a mouse), using an electrochemical pH probe, in both the absence and presence of pharmacological agents aimed at altering acid/bicarbonate production, is reported. Three pH electrodes were first assessed for suitability using a GI tract biological mimic buffer solution containing 0.5 % mucin. These include a traditional glass pH probe, an iridium oxide (IrOx) coated electrode (both operated potentiometrically) and a quinone (Q) surface-integrated boron doped diamond (BDD-Q) electrode (voltammetric). In mucin the timescale for both IrOx and glass to obtain stable pH readings was in the ~100’s of s, most likely due to mucin adsorption, in contrast to 6 s with the BDD-Q electrode. Both the glass and IrOx pH electrodes were also compromised on robustness due to fragility and delamination (IrOx); contact with the GI tissue was an experimental requirement. BDD-Q was deemed the most appropriate. Ten measurements were made along the GI tract, esophagus (1), stomach (5) and duodenum (4). Under buffer only conditions, the BDD-Q probe tracked the pH from neutral in the esophagus, to acidic in the stomach and rising to more alkaline in the duodenum. In the presence of omeprazole, a proton pump inhibitor, the body regions of the stomach exhibited elevated pH levels. Under melatonin treatment (a bicarbonate agonist and acid inhibitor), both the body of the stomach and the duodenum showed elevated pH levels. This study demonstrates the versatility of the BDD-Q pH electrode for real-time ex-vivo biological tissue measurements.

Mon 13 Jul 2020, 15:16

• Electric Field‐Controlled Synthesis and Characterisation of Single Metal Organic Framework Nanoparticles

Achieving control over the size distribution of metal organic framework (MOF) nanoparticles is key to biomedical applications and seeding techniques. Electrochemical control over the nanoparticle synthesis of the MOF, HKUST‐1, is achieved using a nanopipette injection method to locally mix Cu 2+ salt precursor and benzene tricarboxylate (BTC 3‐ ) ligand reagents, form MOF nanocrystals, and collect and characterise them on a TEM grid. In situ analysis of the size and translocation frequency of HKUST‐1 nanoparticles is demonstrated, using the nanopipette to detect resistive pulses as nanoparticles form. Complementary modelling of mass transport in the electric field, enables particle size to be estimated and explains the feasibility of particular reaction conditions, including inhibitory effects of excess BTC 3‐ . These new methods should be applicable to a variety of MOFs, and scaling up synthesis possible via arrays of nanoscale reaction centres, for example using nanopore membranes.

Wed 08 Jul 2020, 15:03

Latest news Newer news Older news

Let us know you agree to cookies