Skip to main content Skip to navigation

Recent Publications Feed (ADMIN)

  1. Insert code for bullet point before paper title - • - and insert a space
  2. COPY AND PASTE full title into the title field
  3. In abstract tab insert authors names, year, journal, pages
  4. In tag box insert authors names separated by a comma

 

• Nanoscale Electrocatalysis of Hydrazine Electro-Oxidation at Blistered Graphite Electrodes

There is great interest in finding and developing new, efficient, and more active electrocatalytic materials. Surface modification of highly oriented pyrolytic graphite, through the introduction of surface “blisters”, is demonstrated to result in an electrode material with greatly enhanced electrochemical activity. The increased electrochemical activity of these blisters, which are produced by electro-oxidation in HClO4, is revealed through the use of scanning electrochemical cell microscopy (SECCM), coupled with complementary techniques (optical microscopy, field emission-scanning electron microscopy, Raman spectroscopy, and atomic force microscopy). The use of a linear sweep voltammetry (LSV)-SECCM scan regime allows for dynamic electrochemical mapping, where a voltammogram is produced at each pixel, from which movies consisting of spatial electrochemical currents, at a series of applied potentials, are produced. The measurements reveal significantly enhanced electrocatalytic activity at blisters when compared to the basal planes, with a significant cathodic shift in the onset potential of the hydrazine electro-oxidation reaction. The improved electrochemical activity of the hollow structure of blistered graphite could be explained by the increased adsorption of protonated hydrazine at oxygenated defect sites, the ease of ion–solvent intercalation/deintercalation, and the reduced susceptibility to N2 nanobubble attachment (as a product of the reaction). This study highlights the capability of electrochemistry to tailor the surface structure of graphite and presents a new electrocatalyst for hydrazine electro-oxidation.

Mon 14 Nov 2016, 11:20

• Electrochemistry of Fe3+/2+ at Highly Oriented Pyrolytic Graphite (HOPG) Electrodes: Kinetics, Identification of Major Electroactive Sites and Time Effects on the Response

The electrochemistry of the Fe3+/2+ redox couple has been studied on highly oriented pyrolytic graphite (HOPG) samples that differ in step edge density by 2 orders of magnitude to elucidate the effect of surface structure on the electron transfer (ET) kinetics. Macroscopic cyclic voltammetry measurements in a droplet-cell arrangement, highlight that the Fe3+/2+ process is characterised by slow ET kinetics on HOPG and that step edge coverage has little effect on the electrochemistry of Fe3+/2+. A standard heterogeneous ET rate constant of ~5 × 10-5 cm s-1 for freshly cleaved HOPG was derived from simulation of the experimental results, which fell into the range of the values reported for metal eletrodes, e.g. platinum and gold, despite the remarkable difference in density of electronic states (DOS) between HOPG and metal electrodes. This provides further evidence that outer-sphere redox processes on metal and sp2 carbon electrodes appear to be adiabatic. Complementary surface electroactivity mapping of HOPG, using scanning electrochemical cell microscopy, reveal the basal plane to be the predominant site for the Fe3+/2+ redox process. It is found that time after cleavage of the HOPG surface has an impact on the surface wettability (and surface contamination), as determined by contact angle measurements, and that this leads to a slow deterioration of the kinetics. These studies further confirm the importance of understanding and evaluating surface structure and history effects in HOPG electrochemistry, and how high resolution measurements, coupled with macroscopic studies provide a holistic view of electrochemical processes.

Fri 04 Nov 2016, 09:53

• Quinone electrochemistry for the comparative assessment of sp2 surface content of boron doped diamond electrodes

Surface coverage measurements of electroactive quinone groups present on sp2 carbon sites, are used to inform on the sp2 surface content of boron doped diamond (BDD) electrodes. Laser micromachining of an electrode surface is used to systematically increase the amount of sp2 carbon present by increasing the area machined. A linear relationship between quinone surface coverage and surface area lasered is determined (R2 = 0.9999). This approach can also be used for comparative assessment of electrodes containing different amounts of surface sp2 carbon.

Fri 14 Oct 2016, 11:15

Latest news Newer news Older news

Let us know you agree to cookies