Skip to main content Skip to navigation

Publications RSS

• Electrochemical Impedance Measurements in Scanning Ion Conductance Microscopy

Electrochemical impedance spectroscopy (EIS) is a versatile tool for electrochemistry, particularly when applied locally to reveal the properties and dynamics of heterogeneous interfaces. A new method to generate local electrochemical impedance spectra is outlined, by applying a harmonic bias between a quasi-reference counter electrode (QRCE) placed in a nanopipet tip of a scanning ion conductance microscope (SICM) and a conductive (working electrode) substrate (two-electrode setup). The AC frequency can be tuned so that the magnitude of the impedance is sensitive to the tip-to-substrate distance, whereas the phase angle is broadly defined by the local capacitive response of the electrical double layer (EDL) of the working electrode. This development enables the surface topography and the local capacitance to be sensed reliably, and separately, in a single measurement. Further, self-referencing the probe impedance near the surface to that in the bulk solution allows the local capacitive response of the working electrode substrate in the overall AC signal to be determined, establishing a quantitative footing for the methodology. The spatial resolution of AC-SICM is an order of magnitude larger than the tip size (100 nm radius), for the studies herein, due to frequency dispersion. Comprehensive finite element method (FEM) modeling is undertaken to optimize the experimental conditions and minimize the experimental artifacts originating from the frequency dispersion phenomenon, and provides an avenue to explore the means by which the spatial resolution could be further improved.

Fri 04 Sep 2020, 09:22

• Ex-vivo Electrochemical pH Mapping of the Gastrointestinal Tract in the Absence and Presence of Pharmacological Agents

Ex-vivo pH profiling of the upper gastrointestinal (GI) tract (of a mouse), using an electrochemical pH probe, in both the absence and presence of pharmacological agents aimed at altering acid/bicarbonate production, is reported. Three pH electrodes were first assessed for suitability using a GI tract biological mimic buffer solution containing 0.5 % mucin. These include a traditional glass pH probe, an iridium oxide (IrOx) coated electrode (both operated potentiometrically) and a quinone (Q) surface-integrated boron doped diamond (BDD-Q) electrode (voltammetric). In mucin the timescale for both IrOx and glass to obtain stable pH readings was in the ~100’s of s, most likely due to mucin adsorption, in contrast to 6 s with the BDD-Q electrode. Both the glass and IrOx pH electrodes were also compromised on robustness due to fragility and delamination (IrOx); contact with the GI tissue was an experimental requirement. BDD-Q was deemed the most appropriate. Ten measurements were made along the GI tract, esophagus (1), stomach (5) and duodenum (4). Under buffer only conditions, the BDD-Q probe tracked the pH from neutral in the esophagus, to acidic in the stomach and rising to more alkaline in the duodenum. In the presence of omeprazole, a proton pump inhibitor, the body regions of the stomach exhibited elevated pH levels. Under melatonin treatment (a bicarbonate agonist and acid inhibitor), both the body of the stomach and the duodenum showed elevated pH levels. This study demonstrates the versatility of the BDD-Q pH electrode for real-time ex-vivo biological tissue measurements.

Mon 13 Jul 2020, 15:16

• Electric Field‐Controlled Synthesis and Characterisation of Single Metal Organic Framework Nanoparticles

Achieving control over the size distribution of metal organic framework (MOF) nanoparticles is key to biomedical applications and seeding techniques. Electrochemical control over the nanoparticle synthesis of the MOF, HKUST‐1, is achieved using a nanopipette injection method to locally mix Cu 2+ salt precursor and benzene tricarboxylate (BTC 3‐ ) ligand reagents, form MOF nanocrystals, and collect and characterise them on a TEM grid. In situ analysis of the size and translocation frequency of HKUST‐1 nanoparticles is demonstrated, using the nanopipette to detect resistive pulses as nanoparticles form. Complementary modelling of mass transport in the electric field, enables particle size to be estimated and explains the feasibility of particular reaction conditions, including inhibitory effects of excess BTC 3‐ . These new methods should be applicable to a variety of MOFs, and scaling up synthesis possible via arrays of nanoscale reaction centres, for example using nanopore membranes.

Wed 08 Jul 2020, 15:03

• Scanning Electrochemical Cell Microscopy (SECCM) in Aprotic Solvents: Practical Considerations and Applications

Many applications in modern electrochemistry, notably electrosynthesis and energy storage/conversion take advantage of the “tunable” physicochemical properties (e.g., proton availability and/or electrochemical stability) of non-aqueous (e.g., aprotic) electrolyte media. This work develops general guidelines pertaining to the use of scanning electrochemical cell microscopy (SECCM) in aprotic solvent electrolyte media to address contemporary structure−electrochemical activity problems. Using the simple outer-sphere Fc0/+ process (Fc = ferrocene) as a model system, high boiling point (low vapor pressure) solvents give rise to highly robust and reproducible electrochemistry, whereas volatile (low boiling point) solvents need to be mixed with suitable low melting point supporting electrolytes (e.g., ionic liquids) or high boiling point solvents to avoid complications associated with salt precipitation/crystallization on the scanning (minutes to hours) timescale. When applied to perform microfabrication — specifically the electrosynthesis of the conductive polymer, polypyrrole — the optimized SECCM set up produces highly reproducible arrays of synthesized (electrodeposited) material on a commensurate scale to the employed pipet probe. Applying SECCM to map electrocatalytic activity — specifically the electro-oxidation of iodide at polycrystalline platinum — reveals unique (i.e., structure-dependent) patterns of surface activity, with grains of specific crystallographic orientation, grain boundaries and areas of high local surface misorientation identified as potential electrocatalytic “hot spots”. The work herein further cements SECCM as a premier technique for structure−function−activity studies in (electro)materials science and will open up exciting new possibilities through the use of aprotic solvents for rational analysis/design in electrosynthesis, microfabrication, electrochemical energy storage/conversion and beyond.

Tue 07 Jul 2020, 14:07

• Assessment of acid and thermal oxidation treatments for removing sp2 bonded carbon from the surface of boron doped diamond

The presence of sp2 bonded carbon on a diamond or doped diamond surface, as a result of growth or processing, can affect material properties negatively, hence removal processes must be developed. Using boron doped diamond (BDD) we investigate the effectiveness of different removal methods via electrochemistry and transmission electron microscopy. We focus on two BDD surfaces, one processed by ns laser micromachining and the second which contains sp2 bonded carbon as a result of chemical vapour deposition (CVD) growth. After micromachining a layer of ordered graphite sits on the BDD surface, topped by fissured amorphous carbon (total thickness ∼ μm). Oxidative acid treatment at elevated temperature cannot remove all the sp2 bonded carbon and much smaller clusters of perpendicularly-orientated graphite (tens of nm in diameter), capped with a thinner layer of amorphous carbon – that we term “denatured graphite” – remain. In contrast, thermal oxidation in air at 600 °C is capable of all cluster removal, and can also be used to remove sp2 bonded carbon from as-grown CVD BDD. Such understanding is important to any application where sp2 bonded surface carbon resulting from CVD growth or laser processing is detrimental for the intended application, e.g. in diamond quantum technology, photonics and electrochemistry.

Thu 11 Jun 2020, 09:42

• Scanning Electrochemical Cell Microscopy: A Natural Technique for Single Entity Electrochemistry

Scanning electrochemical cell microscopy (SECCM) is a robust and versatile scanning electrochemical probe microscopy technique that allows direct correlation of structure-activity at the nanoscale. SECCM utilizes a mobile droplet cell to investigate and visualize electrochemical activity at interfaces with high spatio-temporal resolution, while also providing topographical information. This article highlights diverse contemporary challenges in the field of single entity electrochemistry (SEE) tackled by the increasing uptake of SECCM globally. Various applications of SECCM in SEE are featured herein, including electrocatalysis, electrodeposition, corrosion science and materials science, with electrode materials spanning particles, polymers, 2D materials and complex polycrystalline substrates. The use of SECCM for patterning structures is also highlighted.

Mon 01 Jun 2020, 10:46

Latest news Newer news Older news