Please read our student and staff community guidance on COVID-19
Skip to main content Skip to navigation

Publications

No. of Publications: 49

See also Google Scholar


Select tags to filter on

A deep neural network for molecular wave functions in quasi-atomic minimal basis representation

A deep neural network for molecular wave functions in quasi-atomic minimal basis representation

M. Gastegger, A. McSloy, M. Luya, K. T. Schütt, R. J. Maurer, arXiv: 2005.06979

"We present an adaptation of the recently proposed SchNet for Orbitals (SchNOrb) deep convolutional neural network model [Nature Commun. 10, 5024 (2019)] for electronic wave functions in an optimised quasi-atomic minimal basis representation. For five organic molecules ranging from 5 to 13 heavy atoms, the model accurately predicts molecular orbital energies and wavefunctions and provides access to derived properties for chemical bonding analysis. Particularly for larger molecules, the model outperforms the original atomic-orbital-based SchNOrb method in terms of accuracy and scaling. "

Alkali Doping Leads to Charge-Transfer Salt Formation in a Two-Dimensional Metal-Organic Framework

Alkali Doping Leads to Charge-Transfer Salt Formation in a Two-Dimensional Metal-Organic Framework

P. J. Blowey, B. Sohail, L. A. Rochford, T. Lafosse, D. A. Duncan, P. T. P. Ryan, D. A. Warr, T.-L. Lee, G. Costantini, R. J. Maurer, and D. P. Woodruff, ACS Nano DOI: 10.1021/acsnano.0c03133 (2020)

"We show that the insertion of alkali atoms can significantly change the structure and electronic properties of a metal-organic interface. Coadsorption of tetracyanoquinodimethane (TCNQ) and potassium on a Ag(111) surface leads to the formation of a two-dimensional charge transfer salt, with properties quite different to those of the two-dimensional Ag adatom TCNQ metal-organic framework formed in the absence of K doping. We establish a highly accurate structural model by combination of quantitative XSW, STM, and DFT calculations. Full agreement between the experimental data and the computational prediction of the structure is only achieved by inclusion of a charge-transfer-scaled dispersion correction in the DFT, which correctly accounts for the effects of strong charge transfer on the atomic polarizability of potassium. "

Enhanced Bonding of Pentagon–Heptagon Defects in Graphene to Metal Surfaces: Insights from the Adsorption of Azulene and Naphthalene to Pt(111)

Enhanced Bonding of Pentagon–Heptagon Defects in Graphene to Metal Surfaces: Insights from the Adsorption of Azulene and Naphthalene to Pt(111)

Benedikt P. Klein, S. Elizabeth Harman, Lukas Ruppenthal, Griffin M. Ruehl, Samuel J. Hall, Spencer J. Carey, Jan Herritsch, Martin Schmid, Reinhard J. Maurer, Ralf Tonner, Charles T. Campbell, and J. Michael Gottfried, Chem. Mater. 32, 1041-1053 (2020)

"We show here that the interface properties may be controlled by topological defects, such as the pentagon–heptagon (5–7) pairs, because of their strongly enhanced bonding to the metal. To measure the bond energy and other key properties not accessible for the embedded defects, we use azulene as a molecular model for the 5–7 defect. Comparison to its isomer naphthalene, which represents the regular graphene structure, reveals that azulene interacts more strongly with a Pt(111) surface. Using a combination of single-crystal adsorption calorimetry, x-ray photoelectron and photoabsorption spectroscopies (XPS/NEXAFS), and Density Functional Theory, we fully characterize the adsorption strength, the surface structure and surface chemistry of 5-7 defect systems on Pt(111). Our model study shows that the topology of the π-electron system strongly affects its bonding to a transition metal and thus can be utilized to tailor interface properties."

Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions

Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions

Kristof T. Schütt, Michael Gastgger, Alexandre Tkatchenko, Klaus-Robert Müller, Reinhard J. Maurer, Nature Commun. 10, 5024 (2019)

"Here we present a deep machine learning framework for the prediction of the quantum mechanical wavefunction in a local basis of atomic orbitals from which all other ground-state properties can be derived. This approach retains full access to the electronic structure via the wavefunction at force-field-like efficiency and captures quantum mechanics in an analytically differentiable representation. On several examples, we demonstrate that this opens promising avenues to perform inverse design of molecular structures for targeting electronic property optimisation and a clear path towards increased synergy of machine learning and quantum chemistry."

Molecule–Metal Bond of Alternant versus Nonalternant Aromatic Systems on Coinage Metal Surfaces: Naphthalene versus Azulene on Ag(111) and Cu(111)

Molecule–Metal Bond of Alternant versus Nonalternant Aromatic Systems on Coinage Metal Surfaces: Naphthalene versus Azulene on Ag(111) and Cu(111)

    Benedikt P. Klein, Juliana M. Morbec, Markus Franke, Katharina K. Greulich, Malte Sachs, Shayan Parhizkar, Francois C. Boquet, Martin Schmidt, Samuel J. Hall, Reinhard J. Maurer, Bernd Meyer, Ralf Tonner, Christian Kumpf, Peter Kratzer, and J. Michael Gottfried, J. Phys. Chem. C just accepted, DOI: 10.1021/acs.jpcc.9b08824 (2019)

    "The coverage-dependent interaction of Azulene and Naphthalene with Ag(111) and Cu(111) surfaces was studied with the normal-incidence X-ray standing wave (NIXSW) technique, near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, UV and X-ray photoelectron spectroscopies (UPS and XPS), and density functional theory (DFT). We analyse the interaction strength and charge-transfer at the molecule-metal interface by comparing simulated and measured NEXAFS spectra."

    Performance of van der Waals DFT approaches for helium diffraction on metal surfaces

    Performance of van der Waals DFT approaches for helium diffraction on metal surfaces

    Marcos del Cueto, Reinhard Maurer, Amjad Al Taleb, Daniel Farias, Fernando Martin and Cristina Diaz, J. Phys.: Condens. Matter 31, 135901 (2019).

    "The ability of the different approaches proposed to date to include the effects of van der Waals (vdW) dispersion forces in density functional theory (DFT) is currently under debate. Here, we used the diffraction of He on a Ru(0001) surface as a challenging benchmark system to analyze the suitability of several representative approaches, from the ones correcting the exchange-correlation generalized gradient approximation (GGA) functional, to the ones correcting the DFT energies through pairwise-based methods. To perform our analysis, we have built seven continuous potential energy surfaces (PESs) and carried out quantum dynamics simulations using a multi-configuration time-dependent Hartree (MCTDH) method. Our analysis reveals that standard DFT within the PBE-GGA framework, although it overestimates diffraction probabilities, yields the best results in comparison with available experimental measurements."
    Wed 16 Jan 2019, 20:08 | Tags: Density Functional Theory, dispersion interactions

    Adhesion, forces and the stability of interfaces

    Adhesion, forces and the stability of interfaces

    Robin Guttmann, Johannes Hoja, Christoph Lechner, Reinhard J. Maurer, and Alexander F. Sax, Beilstein J. Org. Chem., 15, 106–129. (2019)

    "Weak molecular interactions (WMI) are responsible for processes such as physisorption; they are essential for the structure and stability of interfaces, and for bulk properties of liquids and molecular crystals. For a long time, dispersion was largely ignored in chemistry, attractive intermolecular interactions were nearly exclusively attributed to electrostatic interactions. We discuss the importance of dispersion interactions for the stabilization in systems that are traditionally explained in terms of the “special interactions” mentioned above."

    https://www.beilstein-journals.org/s/eDT9bbVnb5


    Hot-electron effects during reactive scattering of H2 from Ag(111): assessing the sensitivity to initial conditions, coupling magnitude, and electronic temperature

    Hot-electron effects during reactive scattering of H2 from Ag(111): assessing the sensitivity to initial conditions, coupling magnitude, and electronic temperature

    Yaolong Zhang, Reinhard J. Maurer, Hua Guo and Bin Jiang, Faraday Discuss. 214, 105-121 (2019)

    "Using molecular dynamics simulations with electronic friction, we systematically study the effect of hot electrons on measurable state-to-state scattering probabilities of molecular hydrogen from a (111) surface of silver. We find that dynamic scattering results and the ensuing energy loss are highly sensitive to the magnitude of electronic friction."



    Hot-electron effects during reactive scattering of H2 from Ag(111): the interplay between mode-specific electronic friction and the potential energy landscape

    Hot-electron effects during reactive scattering of H2 from Ag(111): the interplay between mode-specific electronic friction and the potential energy landscape

    Y.Zhang, R.J.Maurer, H.Guo, B.Jiang, Chem. Sci. 10, 1089-1097 (2019)

    "The breakdown of the Born-Oppenheimer approximation gives rise to nonadiabatic effects in gas-surface reactions at metal surfaces. However, for a given reaction, it remains unclear which factors quantitatively determine whether these effects measurably contribute to surface reactivity in catalysis and photo/electrochemistry. Here, we systematically investigate hot electron effects during H2 scattering from Ag(111) using electronic friction theory."


    The Structure of VOPc on Cu(111): Does V═O Point Up, or Down, or Both?

    The Structure of VOPc on Cu(111): Does V═O Point Up, or Down, or Both?

    P.J.Blowey. R.J.Maurer, L.A.Rochford, D.A.Duncan, J.-H.Kang, D.A.Warr, A.J.Ramadan, T.-L.Lee, P.K.Thakur, G.Constantini, K.Reuter and D.P.Woodruff The Journal of Physical Chemistry C 123, 8101-8111, (2019)

    "The local structure of the nonplanar phthalocyanine, vanadyl phthalocyanine (VOPc), adsorbed on Cu(111) at a coverage of approximately one-half of a saturated molecular layer, has been investigated by a combination of normal-incidence X-ray standing waves (NIXSW), scanned-energy mode photoelectron diffraction (PhD), and density-functional theory (DFT), complemented by scanning tunnelling microscopy (STM)."


    Computational design of metal-supported molecular switches: Transient ion formation during light- and electron-induced isomerisation of azobenzene

    Computational design of metal-supported molecular switches: Transient ion formation during light- and electron-induced isomerisation of azobenzene

    R. J. Maurer and K. Reuter, J. Phys. Condens Matter, DOI:10.1088/1361-648X/aaf0e1 (2018), Invited Article

    "Using DFT and linear expansion Delta-Self-Consistent DFT excited-state calculations, we systematically analyse important design parameters that define successful light-induced molecular switching of azobenzene."


    Tracking Metal Electrodeposition Dynamics from Nucleation and Growth of a Single Atom to Crystalline Nanoparticle

    Tracking Metal Electrodeposition Dynamics from Nucleation and Growth of a Single Atom to Crystalline Nanoparticle

    H. E. M. Hussein, R. J. Maurer, H. Amari, J. J. P. Peters, L. Meng, R. Beanland, M. E. Newton, J. V. Macpherson, ACS Nano 12, pp. 7388-7396 (2018)

    "Identical Location Scanning Transmission Electron Microscopy and Density Functional Theory calculations give the first account of electrochemically-driven gold deposition with single-atom resolution."


    Electron-Hole-Pair-Induced Vibrational Energy Relaxation of Rhenium Catalysts on Gold Surfaces

    Electron-Hole-Pair-Induced Vibrational Energy Relaxation of Rhenium Catalysts on Gold Surfaces

    Aimin Ge, Benjamin Rudshteyn, Jingyi Zhu, Reinhard J. Maurer, VIctor S. Batista, and Tianquan Lian, J. Phys. Chem. Lett. 9, 406-412 (2018)

    "Using a combination of time-resolved vibrational spectroscopy and Density Functional Theory, we study the vibrational relaxation mechanisms of a metal-adsorbed reduction catalyst."


    Ab-initio tensorial electronic friction for molecules on metal surfaces: nonadiabatic vibrational relaxation

    Ab-initio tensorial electronic friction for molecules on metal surfaces: nonadiabatic vibrational relaxation

    Reinhard J. Maurer, Mikhail Askerka, Victor S. Batista, John C. Tully, Phys. Rev. B. 94, 115432 (2016)

    We present our efficient and robust ab-initio implementation of tensorial electronic friction and apply it to calculate vibrational lifetimes.


    Switching of an Azobenzene-Tripod Molecule on Ag(111)

    Switching of an Azobenzene-Tripod Molecule on Ag(111)

    Katharina Scheil, Thiruvancheril G. Gopakumar, Julia Bahrenburg, Friedrich Temps, Reinhard J. Maurer, Karsten Reuter, Richard Berndt, J. Phys. Chem. Lett. 7, 2080-2084 (2016)

    We observe and interpret the mechanism of multistate switching of an Azobenzene Tripod on Ag(111) using STM, STS and Density Functional Theory.


    Adsorption structures and energetics of molecules on metal surfaces: Bridging experiment and theory

    Adsorption structures and energetics of molecules on metal surfaces: Bridging experiment and theory

    Reinhard J. Maurer, Victor G. Ruiz, Javier Camarillo-Cisneros, Wei Liu, Nicola Ferri, Karsten Reuter, Alexandre Tkatchenko, Prog. Surf. Sci. 91, 72-100 (2016)

    By reviewing experiment and calculation data for structures and energies, we compose a benchmark database for molecules on metal surfaces.


    Role of Tensorial Electronic Friction in Energy Transfer at Metal Surfaces

    Role of Tensorial Electronic Friction in Energy Transfer at Metal Surfaces

    Mikhail Askerka, Reinhard J. Maurer, Victor S. Batista, John C. Tully, Phys. Rev. Lett. 116, 217601 (2016)
    Editor’s Suggestion

    We use time-dependent perturbation theory to calculate the full electronic friction tensor and study its relevance in the simulation of dynamics at surfaces.


    Thermal and electronic fluctuations of flexible adsorbed molecules: Azobenzene on Ag(111)

    Thermal and electronic fluctuations of flexible adsorbed molecules: Azobenzene on Ag(111)

    Reinhard J. Maurer, Wei Liu, Igor Poltavsky, Thomas Stecher, Harald Oberhofer, Karsten Reuter, Alexandre Tkatchenko, Phys. Rev. Lett., 116, 146101 (2016)

    Ab Initio molecular dynamics simulation of the free energy of desorption reveals collective electronic and thermal fluctuations that define the finite-temperature energetics of complex adsorbates.


    Spin manipulation by creation of single-molecule radical cations

    Spin manipulation by creation of single-molecule radical cations

    S. Karan, N. Li, Y. Zhang, Y. He, I-P. Hong, H. Song, J.-T. Lü, Y. Wang, L. Peng, K. Wu, G. S. Michelitsch, R. J. Maurer, K. Diller, K. Reuter, A. Weissmann, and R. Berndt, Phys. Rev. Lett., 116, 027201 (2016)

    We investigate magnetic switching of all-trans-retinoic acid adsorbed on a Au(111) surface using Scanning Tunneling Microscopy and Density Functional Theory.


    Interfacial charge rearrangement and intermolecular interactions: Density-functional theory study of free-base porphine adsorbed on Ag(111) and Cu(111)

    Interfacial charge rearrangement and intermolecular interactions: Density-functional theory study of free-base porphine adsorbed on Ag(111) and Cu(111)

    M. Müller, K. Diller, R. J. Maurer, K. Reuter, J. Chem. Phys., 144, 024701 (2016)

    We study the interactions and the self-assembly behaviour of Porphine on Ag(111) and Cu(111). We find significant substrate-mediated, and negligible direct lateral interactions.


    Coverage-Driven Dissociation of Azobenzene on Cu(111): A Route Towards Defined Surface Functionalization

    Coverage-Driven Dissociation of Azobenzene on Cu(111): A Route Towards Defined Surface Functionalization

    M. Willenbockel, R. J. Maurer, C. Bronner, M. Schulze, B. Stadtmüller, S. Soubatch, P. Tegeder, K. Reuter, F. S. Tautz, Chem. Commun., 51, 15324-15327 (2015)

    Using X-ray Photoelectron Spectroscopy, X-ray Standing Waves and Density Functional Theory we discover a novel route towards surface functionalization by coverage-driven dissociation of Azobenzene on Cu(111)


    Thiolate-Bonded Self-Assembled Monolayers on Ni(111): Bonding Strength, Structure and Stability

    Thiolate-Bonded Self-Assembled Monolayers on Ni(111): Bonding Strength, Structure and Stability

    F. Blobner, P. N. Abufager, R. Han, J. Bauer, D. A. Duncan, R. J. Maurer, K. Reuter, P. Feulner, F. Allegretti, J. Phys. Chem. C., 119, 15455-15468 (2015)

    Using X-ray Photoelectron Spectroscopy, NEXAFS and Density Functional Theory we identify the insufficient stability of halogenated self-assembled monolayers on a Ni(111) surface


    Many Body Dispersion Effects in the Binding of Adsorbates on Metal Surfaces

    Many Body Dispersion Effects in the Binding of Adsorbates on Metal Surfaces

    R. J. Maurer, V. Ruiz, A. Tkatchenko, J. Chem. Phys., 143, 102808 (2015)

    We study the effect of many body dispersion on the geometry and energetics of atoms, molecules and nanostructures adsorbed to a metal surface and find a ubiquitous importance of many body effects to correctly describe adsorbates.


    Photoswitching in nanoporous, crystalline solids: an experimental and theoretical study for azobenzene linkers incorporated in MOFs

    Photoswitching in nanoporous, crystalline solids: an experimental and theoretical study for azobenzene linkers incorporated in MOFs

    Z. Wang, L. Heinke, J. Jelic, M. Cakici, M. Dommaschk, R. J. Maurer, H. Oberhofer, S. Grosjean, R. Herges, S. Bräse, K. Reuter, C. Wöll, Phys. Chem. Chem. Phys. 17, 14582-14587 (2015)

    Using Density-Functional Theory we identify the reasons for switching or non-switching of azobenzene linkers in metal-organic frameworks


    Temperature-dependent templated growth of porphine thin films on the (111) facets of copper and silver

    Temperature-dependent templated growth of porphine thin films on the (111) facets of copper and silver

    K. Diller, F. Klappenberger, F. Allegretti, A. C. Papagergiou, S. Fischer, D. A. Duncan, R. J. Maurer, J. A. Lloyd, S. Cheol Oh, K. Reuter, J. V. Barth, J. Chem. Phys. 141, 144703 (2014)

    Using X-ray photoelectron spectroscopy, NEXAFS and Density Functional Theory we show the coverage dependent adlayer structure of porphine films


    Adsorption of Glucose, Cellobiose, and Cellotetraose onto Cellulose Model Surfaces

    Adsorption of Glucose, Cellobiose, and Cellotetraose onto Cellulose Model Surfaces

    J. Hoja, R. J. Maurer, A. F. Sax, J. Phys. Chem. B 118, 9017-9027(2014)

    We analyse the interplay of dispersion and hydrogen bonding interactions of small carbohydrates on cellulose surfaces


    X-ray standing wave simulations based on Fourier vector analysis as a method to retrieve complex molecular adsorption geometries

    X-ray standing wave simulations based on Fourier vector analysis as a method to retrieve complex molecular adsorption geometries

    G. Mercurio, R. J. Maurer, S. Hagen, F. Leyssner, J. Meyer, P. Tegeder, S. Soubatch, K. Reuter, F. S. Tautz, Front. Phys 2, 2 (2014)

    An analysis method of x-ray standing wave data that enables the detailed adsorption geometry of large, complex adsorbates to be retrieved


    Broken Symmetry of an Adsorbed Molecular Switch Determined by Scanning Tunneling Spectroscopy

    Broken Symmetry of an Adsorbed Molecular Switch Determined by Scanning Tunneling Spectroscopy

    T. G. Gopakumar, T. Davran-Candan, J. Bahrenburg, R. J. Maurer, F. Temps, K. Reuter, R. Berndt, Angew. Chem. Int. Ed. 52, 11007-11010 (2013)

    Using STM and DFT we investigate the reasons for electronic state splitting for an adsorbed molecular switch


    Quantification of finite-temperature effects on adsorption geometries of π-conjugated molecules: Azobenzene/Ag(111)

    Quantification of finite-temperature effects on adsorption geometries of π-conjugated molecules: Azobenzene/Ag(111)

    G. Mercurio, R. J. Maurer, W. Liu, S. Hagen, F. Leyssner, P. Tegeder, J. Meyer, A. Tkatchenko, S. Soubatch, K. Reuter, F. S. Tautz, Phys. Rev. B 88, 035421 (2013)

    We obtain the adsorption structure of Azobenzene on Ag(111) with simulation and experiment by accounting for anharmonic temperature effects


    Excited-state potential-energy surfaces of metal-adsorbed organic molecules from linear expansion Δ-self-consistent field density-functional theory (ΔSCF-DFT)

    Excited-state potential-energy surfaces of metal-adsorbed organic molecules from linear expansion Δ-self-consistent field density-functional theory (ΔSCF-DFT)

    R. J. Maurer, K. Reuter, J. Chem. Phys. 139, 014708 (2013)

    We implement and test a method to efficiently calculate excited states of organic molecules on metal surfaces.


    Older news