Skip to main content Skip to navigation

Publications

No. of Publications: 42

See also Google Scholar


The Structure of VOPc on Cu(111): Does V═O Point Up, or Down, or Both?

The Structure of VOPc on Cu(111): Does V═O Point Up, or Down, or Both?

P.J.Blowey. R.J.Maurer, L.A.Rochford, D.A.Duncan, J.-H.Kang, D.A.Warr, A.J.Ramadan, T.-L.Lee, P.K.Thakur, G.Constantini, K.Reuter and D.P.Woodruff The Journal of Physical Chemistry C 123, 8101-8111, (2019)

"The local structure of the nonplanar phthalocyanine, vanadyl phthalocyanine (VOPc), adsorbed on Cu(111) at a coverage of approximately one-half of a saturated molecular layer, has been investigated by a combination of normal-incidence X-ray standing waves (NIXSW), scanned-energy mode photoelectron diffraction (PhD), and density-functional theory (DFT), complemented by scanning tunnelling microscopy (STM)."


Switching of an Azobenzene-Tripod Molecule on Ag(111)

Switching of an Azobenzene-Tripod Molecule on Ag(111)

Katharina Scheil, Thiruvancheril G. Gopakumar, Julia Bahrenburg, Friedrich Temps, Reinhard J. Maurer, Karsten Reuter, Richard Berndt, J. Phys. Chem. Lett. 7, 2080-2084 (2016)

We observe and interpret the mechanism of multistate switching of an Azobenzene Tripod on Ag(111) using STM, STS and Density Functional Theory.


Spin manipulation by creation of single-molecule radical cations

Spin manipulation by creation of single-molecule radical cations

S. Karan, N. Li, Y. Zhang, Y. He, I-P. Hong, H. Song, J.-T. Lü, Y. Wang, L. Peng, K. Wu, G. S. Michelitsch, R. J. Maurer, K. Diller, K. Reuter, A. Weissmann, and R. Berndt, Phys. Rev. Lett., 116, 027201 (2016)

We investigate magnetic switching of all-trans-retinoic acid adsorbed on a Au(111) surface using Scanning Tunneling Microscopy and Density Functional Theory.


Broken Symmetry of an Adsorbed Molecular Switch Determined by Scanning Tunneling Spectroscopy

Broken Symmetry of an Adsorbed Molecular Switch Determined by Scanning Tunneling Spectroscopy

T. G. Gopakumar, T. Davran-Candan, J. Bahrenburg, R. J. Maurer, F. Temps, K. Reuter, R. Berndt, Angew. Chem. Int. Ed. 52, 11007-11010 (2013)

Using STM and DFT we investigate the reasons for electronic state splitting for an adsorbed molecular switch