Skip to main content Skip to navigation

Publications

No. of Publications: 70

See also Google Scholar


Select tags to filter on

Direct Experimental Evidence for Substrate Adatom Incorporation into a Molecular Overlayer

Direct Experimental Evidence for Substrate Adatom Incorporation into a Molecular Overlayer

P. J. Mouslez, L. A. Rochford, P. T. P. Ryan, P. Blowey, J. Lawrence, D. A. Duncan, H. Hussain, B. Sohail, T.-L. Lee, G. R. Bell, G. Costantini, R. J. Maurer, C. Nicklin, D. P. Woodruff, J. Phys. Chem. C 126, 7346 - 7355 (2022)

"We present the results of a detailed structural study of the Au(111)-F4TCNQ system, combining surface characterization by STM, low-energy electron diffraction, and soft X-ray photoelectron spectroscopy with quantitative experimental structural information from normal incidence X-ray standing wave (NIXSW) and SXRD, together with dispersion-corrected density functional theory (DFT) calculations. SXRD measurements provide unequivocal evidence for the presence and location of Au adatoms, while the DFT calculations show this reconstruction to be strongly energetically favored"


Thermodynamic Driving Forces for Substrate Atom Extraction by Adsorption of Strong Electron Acceptor Molecules

Thermodynamic Driving Forces for Substrate Atom Extraction by Adsorption of Strong Electron Acceptor Molecules

P. Ryan, P. J. Blowey, B. S. Sohail, L. A. Rochford, D. A. Duncan, T.-L. Lee, P. Starrs, G. Costantini, R. J. Maurer, J. Phys. Chem. C 126, 6082-6090 (2022)

"A quantitative structural investigation is reported, aimed at resolving the issue of whether substrate adatoms are incorporated into the monolayers formed by strong molecular electron acceptors deposited onto metallic electrodes. A combination of X-ray standing waves, STM, and DFT show that there is an energetic driving force for adatom incorporation into adsorbate structures of the strong acceptor F4TCNQ on Ag(100) but not for the weaker acceptor TCNQ."


Molecule–Metal Bond of Alternant versus Nonalternant Aromatic Systems on Coinage Metal Surfaces: Naphthalene versus Azulene on Ag(111) and Cu(111)

Molecule–Metal Bond of Alternant versus Nonalternant Aromatic Systems on Coinage Metal Surfaces: Naphthalene versus Azulene on Ag(111) and Cu(111)

    Benedikt P. Klein, Juliana M. Morbec, Markus Franke, Katharina K. Greulich, Malte Sachs, Shayan Parhizkar, Francois C. Boquet, Martin Schmidt, Samuel J. Hall, Reinhard J. Maurer, Bernd Meyer, Ralf Tonner, Christian Kumpf, Peter Kratzer, and J. Michael Gottfried, J. Phys. Chem. C just accepted, DOI: 10.1021/acs.jpcc.9b08824 (2019)

    "The coverage-dependent interaction of Azulene and Naphthalene with Ag(111) and Cu(111) surfaces was studied with the normal-incidence X-ray standing wave (NIXSW) technique, near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, UV and X-ray photoelectron spectroscopies (UPS and XPS), and density functional theory (DFT). We analyse the interaction strength and charge-transfer at the molecule-metal interface by comparing simulated and measured NEXAFS spectra."

    The Structure of VOPc on Cu(111): Does V═O Point Up, or Down, or Both?

    The Structure of VOPc on Cu(111): Does V═O Point Up, or Down, or Both?

    P.J.Blowey. R.J.Maurer, L.A.Rochford, D.A.Duncan, J.-H.Kang, D.A.Warr, A.J.Ramadan, T.-L.Lee, P.K.Thakur, G.Constantini, K.Reuter and D.P.Woodruff The Journal of Physical Chemistry C 123, 8101-8111, (2019)

    "The local structure of the nonplanar phthalocyanine, vanadyl phthalocyanine (VOPc), adsorbed on Cu(111) at a coverage of approximately one-half of a saturated molecular layer, has been investigated by a combination of normal-incidence X-ray standing waves (NIXSW), scanned-energy mode photoelectron diffraction (PhD), and density-functional theory (DFT), complemented by scanning tunnelling microscopy (STM)."


    Adsorption structures and energetics of molecules on metal surfaces: Bridging experiment and theory

    Adsorption structures and energetics of molecules on metal surfaces: Bridging experiment and theory

    Reinhard J. Maurer, Victor G. Ruiz, Javier Camarillo-Cisneros, Wei Liu, Nicola Ferri, Karsten Reuter, Alexandre Tkatchenko, Prog. Surf. Sci. 91, 72-100 (2016)

    By reviewing experiment and calculation data for structures and energies, we compose a benchmark database for molecules on metal surfaces.


    Coverage-Driven Dissociation of Azobenzene on Cu(111): A Route Towards Defined Surface Functionalization

    Coverage-Driven Dissociation of Azobenzene on Cu(111): A Route Towards Defined Surface Functionalization

    M. Willenbockel, R. J. Maurer, C. Bronner, M. Schulze, B. Stadtmüller, S. Soubatch, P. Tegeder, K. Reuter, F. S. Tautz, Chem. Commun., 51, 15324-15327 (2015)

    Using X-ray Photoelectron Spectroscopy, X-ray Standing Waves and Density Functional Theory we discover a novel route towards surface functionalization by coverage-driven dissociation of Azobenzene on Cu(111)


    X-ray standing wave simulations based on Fourier vector analysis as a method to retrieve complex molecular adsorption geometries

    X-ray standing wave simulations based on Fourier vector analysis as a method to retrieve complex molecular adsorption geometries

    G. Mercurio, R. J. Maurer, S. Hagen, F. Leyssner, J. Meyer, P. Tegeder, S. Soubatch, K. Reuter, F. S. Tautz, Front. Phys 2, 2 (2014)

    An analysis method of x-ray standing wave data that enables the detailed adsorption geometry of large, complex adsorbates to be retrieved


    Quantification of finite-temperature effects on adsorption geometries of π-conjugated molecules: Azobenzene/Ag(111)

    Quantification of finite-temperature effects on adsorption geometries of π-conjugated molecules: Azobenzene/Ag(111)

    G. Mercurio, R. J. Maurer, W. Liu, S. Hagen, F. Leyssner, P. Tegeder, J. Meyer, A. Tkatchenko, S. Soubatch, K. Reuter, F. S. Tautz, Phys. Rev. B 88, 035421 (2013)

    We obtain the adsorption structure of Azobenzene on Ag(111) with simulation and experiment by accounting for anharmonic temperature effects