Please read our student and staff community guidance on COVID-19
Skip to main content Skip to navigation

Publications

No. of Publications: 46

See also Google Scholar


Enhanced Bonding of Pentagon–Heptagon Defects in Graphene to Metal Surfaces: Insights from the Adsorption of Azulene and Naphthalene to Pt(111)

Enhanced Bonding of Pentagon–Heptagon Defects in Graphene to Metal Surfaces: Insights from the Adsorption of Azulene and Naphthalene to Pt(111)

Benedikt P. Klein, S. Elizabeth Harman, Lukas Ruppenthal, Griffin M. Ruehl, Samuel J. Hall, Spencer J. Carey, Jan Herritsch, Martin Schmid, Reinhard J. Maurer, Ralf Tonner, Charles T. Campbell, and J. Michael Gottfried, Chem. Mater. 32, 1041-1053 (2020)

"We show here that the interface properties may be controlled by topological defects, such as the pentagon–heptagon (5–7) pairs, because of their strongly enhanced bonding to the metal. To measure the bond energy and other key properties not accessible for the embedded defects, we use azulene as a molecular model for the 5–7 defect. Comparison to its isomer naphthalene, which represents the regular graphene structure, reveals that azulene interacts more strongly with a Pt(111) surface. Using a combination of single-crystal adsorption calorimetry, x-ray photoelectron and photoabsorption spectroscopies (XPS/NEXAFS), and Density Functional Theory, we fully characterize the adsorption strength, the surface structure and surface chemistry of 5-7 defect systems on Pt(111). Our model study shows that the topology of the π-electron system strongly affects its bonding to a transition metal and thus can be utilized to tailor interface properties."

Molecule–Metal Bond of Alternant versus Nonalternant Aromatic Systems on Coinage Metal Surfaces: Naphthalene versus Azulene on Ag(111) and Cu(111)

Molecule–Metal Bond of Alternant versus Nonalternant Aromatic Systems on Coinage Metal Surfaces: Naphthalene versus Azulene on Ag(111) and Cu(111)

    Benedikt P. Klein, Juliana M. Morbec, Markus Franke, Katharina K. Greulich, Malte Sachs, Shayan Parhizkar, Francois C. Boquet, Martin Schmidt, Samuel J. Hall, Reinhard J. Maurer, Bernd Meyer, Ralf Tonner, Christian Kumpf, Peter Kratzer, and J. Michael Gottfried, J. Phys. Chem. C just accepted, DOI: 10.1021/acs.jpcc.9b08824 (2019)

    "The coverage-dependent interaction of Azulene and Naphthalene with Ag(111) and Cu(111) surfaces was studied with the normal-incidence X-ray standing wave (NIXSW) technique, near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, UV and X-ray photoelectron spectroscopies (UPS and XPS), and density functional theory (DFT). We analyse the interaction strength and charge-transfer at the molecule-metal interface by comparing simulated and measured NEXAFS spectra."

    Performance of van der Waals DFT approaches for helium diffraction on metal surfaces

    Performance of van der Waals DFT approaches for helium diffraction on metal surfaces

    Marcos del Cueto, Reinhard Maurer, Amjad Al Taleb, Daniel Farias, Fernando Martin and Cristina Diaz, J. Phys.: Condens. Matter 31, 135901 (2019).

    "The ability of the different approaches proposed to date to include the effects of van der Waals (vdW) dispersion forces in density functional theory (DFT) is currently under debate. Here, we used the diffraction of He on a Ru(0001) surface as a challenging benchmark system to analyze the suitability of several representative approaches, from the ones correcting the exchange-correlation generalized gradient approximation (GGA) functional, to the ones correcting the DFT energies through pairwise-based methods. To perform our analysis, we have built seven continuous potential energy surfaces (PESs) and carried out quantum dynamics simulations using a multi-configuration time-dependent Hartree (MCTDH) method. Our analysis reveals that standard DFT within the PBE-GGA framework, although it overestimates diffraction probabilities, yields the best results in comparison with available experimental measurements."
    Wed 16 Jan 2019, 20:08 | Tags: Density Functional Theory, dispersion interactions

    Adhesion, forces and the stability of interfaces

    Adhesion, forces and the stability of interfaces

    Robin Guttmann, Johannes Hoja, Christoph Lechner, Reinhard J. Maurer, and Alexander F. Sax, Beilstein J. Org. Chem., 15, 106–129. (2019)

    "Weak molecular interactions (WMI) are responsible for processes such as physisorption; they are essential for the structure and stability of interfaces, and for bulk properties of liquids and molecular crystals. For a long time, dispersion was largely ignored in chemistry, attractive intermolecular interactions were nearly exclusively attributed to electrostatic interactions. We discuss the importance of dispersion interactions for the stabilization in systems that are traditionally explained in terms of the “special interactions” mentioned above."

    https://www.beilstein-journals.org/s/eDT9bbVnb5


    Structure and Stability of Molecular Crystals with Many Body Dispersion Inclusive Density Functional Tight Binding

    Structure and Stability of Molecular Crystals with Many Body Dispersion Inclusive Density Functional Tight Binding

    Majid Mortazavi, Jan Gerit Brandenburg, Reinhard J. Maurer, Alexandre Tkatchenko, J. Phys. Chem. Lett. 9, 399-405 (2018)

    "We show the ability of many-body-dispersion-inclusive tight-binding methodology to accurately predict the structure of polymorphic organic molecular crystals."


    Interpretation of X-ray Absorption Spectroscopy in the Presence of Surface Hybridisation

    Interpretation of X-ray Absorption Spectroscopy in the Presence of Surface Hybridisation

    Katharina Diller, Reinhard J. Maurer, Moritz Müller, Karsten Reuter, J. Chem. Phys. 146, 214701 (2017)

    Accurate ab-initio core-level spectroscopy simulations of surface-adsorbed molecules reveal the details of surface hybridization.


    Switching of an Azobenzene-Tripod Molecule on Ag(111)

    Switching of an Azobenzene-Tripod Molecule on Ag(111)

    Katharina Scheil, Thiruvancheril G. Gopakumar, Julia Bahrenburg, Friedrich Temps, Reinhard J. Maurer, Karsten Reuter, Richard Berndt, J. Phys. Chem. Lett. 7, 2080-2084 (2016)

    We observe and interpret the mechanism of multistate switching of an Azobenzene Tripod on Ag(111) using STM, STS and Density Functional Theory.


    Adsorption structures and energetics of molecules on metal surfaces: Bridging experiment and theory

    Adsorption structures and energetics of molecules on metal surfaces: Bridging experiment and theory

    Reinhard J. Maurer, Victor G. Ruiz, Javier Camarillo-Cisneros, Wei Liu, Nicola Ferri, Karsten Reuter, Alexandre Tkatchenko, Prog. Surf. Sci. 91, 72-100 (2016)

    By reviewing experiment and calculation data for structures and energies, we compose a benchmark database for molecules on metal surfaces.


    Charge-Population Based Dispersion Interactions for Molecules and Materials

    Charge-Population Based Dispersion Interactions for Molecules and Materials

    Martin Stöhr, Georg S. Michelitsch, John C. Tully, Karsten Reuter, Reinhard J. Maurer, J. Chem. Phys., 144, 151101 (2016)

    A simple correlation between atomic polarizability and hybridization enables us to couple semi-empirical electronic structure methods with electron density-derived dispersion correction methods.


    Thermal and electronic fluctuations of flexible adsorbed molecules: Azobenzene on Ag(111)

    Thermal and electronic fluctuations of flexible adsorbed molecules: Azobenzene on Ag(111)

    Reinhard J. Maurer, Wei Liu, Igor Poltavsky, Thomas Stecher, Harald Oberhofer, Karsten Reuter, Alexandre Tkatchenko, Phys. Rev. Lett., 116, 146101 (2016)

    Ab Initio molecular dynamics simulation of the free energy of desorption reveals collective electronic and thermal fluctuations that define the finite-temperature energetics of complex adsorbates.


    Interfacial charge rearrangement and intermolecular interactions: Density-functional theory study of free-base porphine adsorbed on Ag(111) and Cu(111)

    Interfacial charge rearrangement and intermolecular interactions: Density-functional theory study of free-base porphine adsorbed on Ag(111) and Cu(111)

    M. Müller, K. Diller, R. J. Maurer, K. Reuter, J. Chem. Phys., 144, 024701 (2016)

    We study the interactions and the self-assembly behaviour of Porphine on Ag(111) and Cu(111). We find significant substrate-mediated, and negligible direct lateral interactions.


    Adsorption of Glucose, Cellobiose, and Cellotetraose onto Cellulose Model Surfaces

    Adsorption of Glucose, Cellobiose, and Cellotetraose onto Cellulose Model Surfaces

    J. Hoja, R. J. Maurer, A. F. Sax, J. Phys. Chem. B 118, 9017-9027(2014)

    We analyse the interplay of dispersion and hydrogen bonding interactions of small carbohydrates on cellulose surfaces