Publications
No. of Publications: 52
See also Google Scholar
First-principles calculations of hybrid inorganic-organic interfaces: From state-of-the-art to best practice
First-principles calculations of hybrid inorganic-organic interfaces: From state-of-the-art to best practice
Oliver T. Hofmann, Egbert Zojer, Lukas Hörmann, Andreas Jeindl, and R. J. Maurer, Phys. Chem. Chem. Phys. DOI: 10.1039/D0CP06605B (2021)
"In this review, we discuss how to choose appropriate atomistic representations for the simulation of hybrid inorganic-organic interfaces. We provide tips and tricks on how to efficiently converge the self-consistent field cycle and to obtain accurate geometries. We particularly focus on potentially unexpected pitfalls and the errors they incur. As a summary, we provide a list of best practice rules for interface simulations that should especially serve as a useful starting point for less experienced users and newcomers to the field."
Adhesion, forces and the stability of interfaces
Adhesion, forces and the stability of interfaces
Robin Guttmann, Johannes Hoja, Christoph Lechner, Reinhard J. Maurer, and Alexander F. Sax, Beilstein J. Org. Chem., 15, 106–129. (2019)
"Weak molecular interactions (WMI) are responsible for processes such as physisorption; they are essential for the structure and stability of interfaces, and for bulk properties of liquids and molecular crystals. For a long time, dispersion was largely ignored in chemistry, attractive intermolecular interactions were nearly exclusively attributed to electrostatic interactions. We discuss the importance of dispersion interactions for the stabilization in systems that are traditionally explained in terms of the “special interactions” mentioned above."
Structure and Stability of Molecular Crystals with Many Body Dispersion Inclusive Density Functional Tight Binding
Structure and Stability of Molecular Crystals with Many Body Dispersion Inclusive Density Functional Tight Binding
Majid Mortazavi, Jan Gerit Brandenburg, Reinhard J. Maurer, Alexandre Tkatchenko, J. Phys. Chem. Lett. 9, 399-405 (2018)
"We show the ability of many-body-dispersion-inclusive tight-binding methodology to accurately predict the structure of polymorphic organic molecular crystals."
Charge-Population Based Dispersion Interactions for Molecules and Materials
Charge-Population Based Dispersion Interactions for Molecules and Materials
Martin Stöhr, Georg S. Michelitsch, John C. Tully, Karsten Reuter, Reinhard J. Maurer, J. Chem. Phys., 144, 151101 (2016)