Skip to main content Skip to navigation

Publications

No. of Publications: 66

See also Google Scholar


Select tags to filter on

Design Principles for Metastable Standing Molecules

Design Principles for Metastable Standing Molecules

H. H. Arefi, D.Corken, F. S.Tautz, R. J. Maurer, C. Wagner, J. Phys. Chem. C 126, 6880-6891 (2022)

"Here, we use density functional theory to study 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA) standing on the Ag(111) surface as well as on the tip of a scanning probe microscope. We cast our results into a simple set of design principles for such metastable structures, the validity of which we subsequently demonstrate in two computational case studies. Our work proves the capabilities of computational nanostructure design in the field of metastable molecular structures and offers the intuition needed to fabricate new devices without tedious trial and error."


The stabilization potential of a standing molecule

The stabilization potential of a standing molecule

Marvin Knol, Hadi H. Arefi, Daniel Corken, James Gardner, F. Stefan Tautz, Reinhard J. Maurer, and Christian Wagner, Science Advances 7, eabj9751 (2021)

"Here, we combine scanning probe experiments with ab initio potential energy calculations to investigate the thermal stability of a prototypical standing molecule. We reveal its generic stabilization mechanism, a fine balance between covalent and van der Waals interactions including the latter's long-range screening by many-body effects, and find a remarkable agreement between measured and calculated stabilizing potentials."

Warwick University Press Release
Warwthermal stability of a prototypical standing molecule. We reveal its generic stabilization mechanism, a fine balance
between covalent and van der Waals interactions including the latter’s long-range screening by many-body fects, and find a remarkable agreement between measured and calculated stabilizing potentials.."

First-principles calculations of hybrid inorganic-organic interfaces: From state-of-the-art to best practice

First-principles calculations of hybrid inorganic-organic interfaces: From state-of-the-art to best practice

Oliver T. Hofmann, Egbert Zojer, Lukas Hörmann, Andreas Jeindl, and R. J. Maurer, Phys. Chem. Chem. Phys. 23, 8132-8180 (2021)

"In this review, we discuss how to choose appropriate atomistic representations for the simulation of hybrid inorganic-organic interfaces. We provide tips and tricks on how to efficiently converge the self-consistent field cycle and to obtain accurate geometries. We particularly focus on potentially unexpected pitfalls and the errors they incur. As a summary, we provide a list of best practice rules for interface simulations that should especially serve as a useful starting point for less experienced users and newcomers to the field."

Adhesion, forces and the stability of interfaces

Adhesion, forces and the stability of interfaces

Robin Guttmann, Johannes Hoja, Christoph Lechner, Reinhard J. Maurer, and Alexander F. Sax, Beilstein J. Org. Chem., 15, 106–129. (2019)

"Weak molecular interactions (WMI) are responsible for processes such as physisorption; they are essential for the structure and stability of interfaces, and for bulk properties of liquids and molecular crystals. For a long time, dispersion was largely ignored in chemistry, attractive intermolecular interactions were nearly exclusively attributed to electrostatic interactions. We discuss the importance of dispersion interactions for the stabilization in systems that are traditionally explained in terms of the “special interactions” mentioned above."

https://www.beilstein-journals.org/s/eDT9bbVnb5


Structure and Stability of Molecular Crystals with Many Body Dispersion Inclusive Density Functional Tight Binding

Structure and Stability of Molecular Crystals with Many Body Dispersion Inclusive Density Functional Tight Binding

Majid Mortazavi, Jan Gerit Brandenburg, Reinhard J. Maurer, Alexandre Tkatchenko, J. Phys. Chem. Lett. 9, 399-405 (2018)

"We show the ability of many-body-dispersion-inclusive tight-binding methodology to accurately predict the structure of polymorphic organic molecular crystals."


Charge-Population Based Dispersion Interactions for Molecules and Materials

Charge-Population Based Dispersion Interactions for Molecules and Materials

Martin Stöhr, Georg S. Michelitsch, John C. Tully, Karsten Reuter, Reinhard J. Maurer, J. Chem. Phys., 144, 151101 (2016)

A simple correlation between atomic polarizability and hybridization enables us to couple semi-empirical electronic structure methods with electron density-derived dispersion correction methods.