Skip to main content Skip to navigation

Publications

No. of Publications: 42

See also Google Scholar


Structure and Stability of Molecular Crystals with Many Body Dispersion Inclusive Density Functional Tight Binding

Structure and Stability of Molecular Crystals with Many Body Dispersion Inclusive Density Functional Tight Binding

Majid Mortazavi, Jan Gerit Brandenburg, Reinhard J. Maurer, Alexandre Tkatchenko, J. Phys. Chem. Lett. 9, 399-405 (2018)

"We show the ability of many-body-dispersion-inclusive tight-binding methodology to accurately predict the structure of polymorphic organic molecular crystals."


Charge-Population Based Dispersion Interactions for Molecules and Materials

Charge-Population Based Dispersion Interactions for Molecules and Materials

Martin Stöhr, Georg S. Michelitsch, John C. Tully, Karsten Reuter, Reinhard J. Maurer, J. Chem. Phys., 144, 151101 (2016)

A simple correlation between atomic polarizability and hybridization enables us to couple semi-empirical electronic structure methods with electron density-derived dispersion correction methods.


Thermal and electronic fluctuations of flexible adsorbed molecules: Azobenzene on Ag(111)

Thermal and electronic fluctuations of flexible adsorbed molecules: Azobenzene on Ag(111)

Reinhard J. Maurer, Wei Liu, Igor Poltavsky, Thomas Stecher, Harald Oberhofer, Karsten Reuter, Alexandre Tkatchenko, Phys. Rev. Lett., 116, 146101 (2016)

Ab Initio molecular dynamics simulation of the free energy of desorption reveals collective electronic and thermal fluctuations that define the finite-temperature energetics of complex adsorbates.


Dynamics of Spatially Confined Bisphenol A Trimers in a Unimolecular Network on Ag(111)

Dynamics of Spatially Confined Bisphenol A Trimers in a Unimolecular Network on Ag(111)

Julian A. Lloyd, Anthoula C. Papageorgiou, Sybille Fischer, Seung Cheol Oh, Özge Saglam, Katharina Diller, David A. Duncan, Francesco Allegretti, Florian Klappenberger, Martin Stöhr, Reinhard J. Maurer, Karsten Reuter, Joachim Reichert, Johannes V. Barth, Nano Lett., 16, 1884-1889 (2016)

A combination of STM, XPS, NEXAFS experiments, Density Functional Theory and Density Functional Tight-Binding simulations reveals interesting thermally-induced confined dynamics of adsorbates.


Many Body Dispersion Effects in the Binding of Adsorbates on Metal Surfaces

Many Body Dispersion Effects in the Binding of Adsorbates on Metal Surfaces

R. J. Maurer, V. Ruiz, A. Tkatchenko, J. Chem. Phys., 143, 102808 (2015)

We study the effect of many body dispersion on the geometry and energetics of atoms, molecules and nanostructures adsorbed to a metal surface and find a ubiquitous importance of many body effects to correctly describe adsorbates.