Skip to main content Skip to navigation

Publications

No. of Publications: 45

See also Google Scholar


A symmetry adapted high dimensional neural network representation of electronic friction tensor of adsorbates on metals

A symmetry adapted high dimensional neural network representation of electronic friction tensor of adsorbates on metals

Yaolong Zhang, Reinhard J. Maurer, Bin Jiang, J. Chem. Phys., just accepted (2019)

"In this work, we develop a new symmetry-adapted neural network representation of electronic friction, based on our recently proposed embedded atom neural network (EANN) framework. Unlike previous methods, our new approach can readily include both molecular and surface degrees of freedom, regardless of the type of surface. Tests on the H2+Ag(111) system show that this approach yields an accurate, efficient, and continuous representation of electronic friction, making it possible to perform large scale TDPT-based MDEF simulations to study both adiabatic and nonadiabatic energy dissipation in a unified framework."

Molecule–Metal Bond of Alternant versus Nonalternant Aromatic Systems on Coinage Metal Surfaces: Naphthalene versus Azulene on Ag(111) and Cu(111)

Molecule–Metal Bond of Alternant versus Nonalternant Aromatic Systems on Coinage Metal Surfaces: Naphthalene versus Azulene on Ag(111) and Cu(111)

    Benedikt P. Klein, Juliana M. Morbec, Markus Franke, Katharina K. Greulich, Malte Sachs, Shayan Parhizkar, Francois C. Boquet, Martin Schmidt, Samuel J. Hall, Reinhard J. Maurer, Bernd Meyer, Ralf Tonner, Christian Kumpf, Peter Kratzer, and J. Michael Gottfried, J. Phys. Chem. C just accepted, DOI: 10.1021/acs.jpcc.9b08824 (2019)

    "The coverage-dependent interaction of Azulene and Naphthalene with Ag(111) and Cu(111) surfaces was studied with the normal-incidence X-ray standing wave (NIXSW) technique, near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, UV and X-ray photoelectron spectroscopies (UPS and XPS), and density functional theory (DFT). We analyse the interaction strength and charge-transfer at the molecule-metal interface by comparing simulated and measured NEXAFS spectra."

    Computational design of metal-supported molecular switches: Transient ion formation during light- and electron-induced isomerisation of azobenzene

    Computational design of metal-supported molecular switches: Transient ion formation during light- and electron-induced isomerisation of azobenzene

    R. J. Maurer and K. Reuter, J. Phys. Condens Matter, DOI:10.1088/1361-648X/aaf0e1 (2018), Invited Article

    "Using DFT and linear expansion Delta-Self-Consistent DFT excited-state calculations, we systematically analyse important design parameters that define successful light-induced molecular switching of azobenzene."


    Interpretation of X-ray Absorption Spectroscopy in the Presence of Surface Hybridisation

    Interpretation of X-ray Absorption Spectroscopy in the Presence of Surface Hybridisation

    Katharina Diller, Reinhard J. Maurer, Moritz Müller, Karsten Reuter, J. Chem. Phys. 146, 214701 (2017)

    Accurate ab-initio core-level spectroscopy simulations of surface-adsorbed molecules reveal the details of surface hybridization.


    Ab-initio tensorial electronic friction for molecules on metal surfaces: nonadiabatic vibrational relaxation

    Ab-initio tensorial electronic friction for molecules on metal surfaces: nonadiabatic vibrational relaxation

    Reinhard J. Maurer, Mikhail Askerka, Victor S. Batista, John C. Tully, Phys. Rev. B. 94, 115432 (2016)

    We present our efficient and robust ab-initio implementation of tensorial electronic friction and apply it to calculate vibrational lifetimes.


    Global structure search for molecules on surfaces: Efficient sampling with curvilinear coordinates

    Global structure search for molecules on surfaces: Efficient sampling with curvilinear coordinates

    Konstantin Krautgasser, Chiara Panosetti, Dennis Palagin, Karsten Reuter, Reinhard J. Maurer, J. Chem. Phys. 145, 084117 (2016)

    We extend our curvilinear coordinate global optimization method to efficiently sample adsorbate structures on surfaces.


    Switching of an Azobenzene-Tripod Molecule on Ag(111)

    Switching of an Azobenzene-Tripod Molecule on Ag(111)

    Katharina Scheil, Thiruvancheril G. Gopakumar, Julia Bahrenburg, Friedrich Temps, Reinhard J. Maurer, Karsten Reuter, Richard Berndt, J. Phys. Chem. Lett. 7, 2080-2084 (2016)

    We observe and interpret the mechanism of multistate switching of an Azobenzene Tripod on Ag(111) using STM, STS and Density Functional Theory.


    Adsorption structures and energetics of molecules on metal surfaces: Bridging experiment and theory

    Adsorption structures and energetics of molecules on metal surfaces: Bridging experiment and theory

    Reinhard J. Maurer, Victor G. Ruiz, Javier Camarillo-Cisneros, Wei Liu, Nicola Ferri, Karsten Reuter, Alexandre Tkatchenko, Prog. Surf. Sci. 91, 72-100 (2016)

    By reviewing experiment and calculation data for structures and energies, we compose a benchmark database for molecules on metal surfaces.


    Role of Tensorial Electronic Friction in Energy Transfer at Metal Surfaces

    Role of Tensorial Electronic Friction in Energy Transfer at Metal Surfaces

    Mikhail Askerka, Reinhard J. Maurer, Victor S. Batista, John C. Tully, Phys. Rev. Lett. 116, 217601 (2016)
    Editor’s Suggestion

    We use time-dependent perturbation theory to calculate the full electronic friction tensor and study its relevance in the simulation of dynamics at surfaces.


    Thermal and electronic fluctuations of flexible adsorbed molecules: Azobenzene on Ag(111)

    Thermal and electronic fluctuations of flexible adsorbed molecules: Azobenzene on Ag(111)

    Reinhard J. Maurer, Wei Liu, Igor Poltavsky, Thomas Stecher, Harald Oberhofer, Karsten Reuter, Alexandre Tkatchenko, Phys. Rev. Lett., 116, 146101 (2016)

    Ab Initio molecular dynamics simulation of the free energy of desorption reveals collective electronic and thermal fluctuations that define the finite-temperature energetics of complex adsorbates.


    Spin manipulation by creation of single-molecule radical cations

    Spin manipulation by creation of single-molecule radical cations

    S. Karan, N. Li, Y. Zhang, Y. He, I-P. Hong, H. Song, J.-T. Lü, Y. Wang, L. Peng, K. Wu, G. S. Michelitsch, R. J. Maurer, K. Diller, K. Reuter, A. Weissmann, and R. Berndt, Phys. Rev. Lett., 116, 027201 (2016)

    We investigate magnetic switching of all-trans-retinoic acid adsorbed on a Au(111) surface using Scanning Tunneling Microscopy and Density Functional Theory.


    Interfacial charge rearrangement and intermolecular interactions: Density-functional theory study of free-base porphine adsorbed on Ag(111) and Cu(111)

    Interfacial charge rearrangement and intermolecular interactions: Density-functional theory study of free-base porphine adsorbed on Ag(111) and Cu(111)

    M. Müller, K. Diller, R. J. Maurer, K. Reuter, J. Chem. Phys., 144, 024701 (2016)

    We study the interactions and the self-assembly behaviour of Porphine on Ag(111) and Cu(111). We find significant substrate-mediated, and negligible direct lateral interactions.


    Coverage-Driven Dissociation of Azobenzene on Cu(111): A Route Towards Defined Surface Functionalization

    Coverage-Driven Dissociation of Azobenzene on Cu(111): A Route Towards Defined Surface Functionalization

    M. Willenbockel, R. J. Maurer, C. Bronner, M. Schulze, B. Stadtmüller, S. Soubatch, P. Tegeder, K. Reuter, F. S. Tautz, Chem. Commun., 51, 15324-15327 (2015)

    Using X-ray Photoelectron Spectroscopy, X-ray Standing Waves and Density Functional Theory we discover a novel route towards surface functionalization by coverage-driven dissociation of Azobenzene on Cu(111)


    Many Body Dispersion Effects in the Binding of Adsorbates on Metal Surfaces

    Many Body Dispersion Effects in the Binding of Adsorbates on Metal Surfaces

    R. J. Maurer, V. Ruiz, A. Tkatchenko, J. Chem. Phys., 143, 102808 (2015)

    We study the effect of many body dispersion on the geometry and energetics of atoms, molecules and nanostructures adsorbed to a metal surface and find a ubiquitous importance of many body effects to correctly describe adsorbates.


    Temperature-dependent templated growth of porphine thin films on the (111) facets of copper and silver

    Temperature-dependent templated growth of porphine thin films on the (111) facets of copper and silver

    K. Diller, F. Klappenberger, F. Allegretti, A. C. Papagergiou, S. Fischer, D. A. Duncan, R. J. Maurer, J. A. Lloyd, S. Cheol Oh, K. Reuter, J. V. Barth, J. Chem. Phys. 141, 144703 (2014)

    Using X-ray photoelectron spectroscopy, NEXAFS and Density Functional Theory we show the coverage dependent adlayer structure of porphine films


    X-ray standing wave simulations based on Fourier vector analysis as a method to retrieve complex molecular adsorption geometries

    X-ray standing wave simulations based on Fourier vector analysis as a method to retrieve complex molecular adsorption geometries

    G. Mercurio, R. J. Maurer, S. Hagen, F. Leyssner, J. Meyer, P. Tegeder, S. Soubatch, K. Reuter, F. S. Tautz, Front. Phys 2, 2 (2014)

    An analysis method of x-ray standing wave data that enables the detailed adsorption geometry of large, complex adsorbates to be retrieved


    Broken Symmetry of an Adsorbed Molecular Switch Determined by Scanning Tunneling Spectroscopy

    Broken Symmetry of an Adsorbed Molecular Switch Determined by Scanning Tunneling Spectroscopy

    T. G. Gopakumar, T. Davran-Candan, J. Bahrenburg, R. J. Maurer, F. Temps, K. Reuter, R. Berndt, Angew. Chem. Int. Ed. 52, 11007-11010 (2013)

    Using STM and DFT we investigate the reasons for electronic state splitting for an adsorbed molecular switch


    Quantification of finite-temperature effects on adsorption geometries of π-conjugated molecules: Azobenzene/Ag(111)

    Quantification of finite-temperature effects on adsorption geometries of π-conjugated molecules: Azobenzene/Ag(111)

    G. Mercurio, R. J. Maurer, W. Liu, S. Hagen, F. Leyssner, P. Tegeder, J. Meyer, A. Tkatchenko, S. Soubatch, K. Reuter, F. S. Tautz, Phys. Rev. B 88, 035421 (2013)

    We obtain the adsorption structure of Azobenzene on Ag(111) with simulation and experiment by accounting for anharmonic temperature effects


    Excited-state potential-energy surfaces of metal-adsorbed organic molecules from linear expansion Δ-self-consistent field density-functional theory (ΔSCF-DFT)

    Excited-state potential-energy surfaces of metal-adsorbed organic molecules from linear expansion Δ-self-consistent field density-functional theory (ΔSCF-DFT)

    R. J. Maurer, K. Reuter, J. Chem. Phys. 139, 014708 (2013)

    We implement and test a method to efficiently calculate excited states of organic molecules on metal surfaces.


    Bistability Loss as a Key Feature in Azobenzene (Non-)Switching on Metal Surfaces

    Bistability Loss as a Key Feature in Azobenzene (Non-)Switching on Metal Surfaces

    R. J. Maurer, K. Reuter, Angew. Chem. Int. Ed. 51, 12009-12011(2012)

    We identify the reason for loss of switching function on metal surfaces as loss of stability

    Thu 12 Oct 2017, 19:57 | Tags: metal surface, Azobenzene, Molecular Switches