Skip to main content Skip to navigation

Gibson Group News

Show all news items

Freezing cells made safer thanks to new polymer made at University of Warwick

- A new polymer that's a cryoprotectant dramatically improves the freezing of cells, has been discovered by Gibson Group researchers at the University of Warwick

- The new polymers can reduce the amount of organic solvent required in cryopreservation (freezing cells) as well as giving more and healthier cells after thawing.

- Findings may help reduce cost and improve distribution of cells for cell-based therapies, diagnostics and research.

Cell freezing (cryopreservation) – which is essential in cell transfusions as well as basic biomedical research – can be dramatically improved using a new polymeric cryoprotectant, discovered at the University of Warwick, which reduces the amount of ‘anti-freeze’ needed to protect cells.

The ability to freeze and store cells for cell-based therapies and research has taken a step forward in the paper ‘A synthetically scalable poly(ampholyte) which dramatically Enhances Cellular Cryopreservation.’ published by the University of Warwick’s Department of Chemistry and Medical School in the journal Biomacromolecules. The new polymer material protects the cells during freezing, leading to more cells being recovered and less solvent-based antifreeze being required.The cells frozen with the polymer (left) and without the polymer (right)

Cryopreservation of cells is an essential process, enabling banking and distribution of cells, which would otherwise degrade. The current methods rely on adding traditional ‘antifreezes’ to the cells to protect them from the cold stress, but not all the cells are recovered and it is desirable to lower the amount of solvent added.

The new Warwick material was shown to allow cryopreservation using less solvent. In particular, the material was very potent at protecting cell monolayers – cells which are attached to a surface, which is the format of how they are grown and used in most biomedical research.

Having more, and better quality cells, is crucial not just for their use in medicine, but to improve the quality and accessibility of cells for the discovery of new drugs for example.

Cell-based therapies are emerging as the “fourth pillar” of chemo-therapy. New methods to help distribute and bank these cells will help make them more accessible and speed up their roll-out, and this new material may aid this process.

Tue 06 Aug 2019, 10:38 | Tags: News, Group News, Publication