Skip to main content

Edit content blocks

hp-01-block

Theoretical and Computational Surface Chemistry

Our research focuses on the theory and simulation of molecular reactions on surfaces and in materials. We study the structure, composition, and reactivity of molecules interacting with solid surfaces. Using quantum mechanical simulation methods, such as Density-Functional Theory, our goal is to find a detailed understanding of the explicit molecular-level dynamics of molecular reactions as they appear in heterogeneous catalysis, photochemistry and nanotechnology. Our method development efforts target the efficient simulation of nonadiabatic and quantum effects in large surface-adsorbate systems, complex surface nanostructures, and gas-surface dynamics.

hp-05-block

Video of the Month

Azobenzene desorption from a silver surface involves complex dynamics determined by molecule-metal van-der-Waals interactions!

More details here.

hp-06-block

Research Opportunities

  • 2 PhD studentships are available for autumn 2019 start date. Check it out!
  • PostDoc opportunities are available for late spring/summer start date. Get in touch, if you're interested!
  • General inquiries for research opportunities at the Master's, PhD and PostDoc level are always welcome. Contact us via Email!

hp-07-block

News

Wed 20 Mar '19
Funding from The Leverhulme Trust for 2 PhD students

We just received funding for 2 PhD students to work on our ambitious simulation methodology for hot-electron chemistry. The goal will be to explore the role of nonadiabatic and quantum effects in hydrogen chemistry in fuel cells and at metal catalysts.

Fri 21 Dec '18
G'day mates! We just received funding for a collaboration project with Monash University in Australia.

The Monash-Warwick Alliance has awarded us with £15k from their Catalyst Fund for a collaborative project with Prof. Katya Pas (Monash), Prof. Julie MacPherson (Warwick), and Prof. Douglas MacFarlane (Monash) to develop simulation methodology for electrocatalysis applications in ionic liquids.