Skip to main content Skip to navigation

News

Select tags to filter on

PG module - Habitability in the Universe

The Centre for Exoplanets and Habitability convenes a Postgraduate module, "Habitability in the Universe", which is run by the Institute for Advance Teaching and Learning. This module is open to all postgraduates, from all disciplines, and covers the subject of habitability from myriad perspectives. More details can be found on the module's home page.


Welcome

Welcome to the website of the Centre for Exoplanets and Habitability (CEH) at the University of Warwick. The CEH is a cross-disciplinary research centre that draws upon expertise from departments across the university. It is a collaborative project which works with both the sciences and arts in order to consider life beyond, and on, this planet. We are a newly formed University Research Centre looking for funding to develop our research goals. Please explore our webpages, and feel free to contact us if you would like to get involved.


A Pathway to the Confirmation and Characterisation of Habitable Alien Worlds

Since the confirmation of the first planets outside our solar system in the 1990s, we have made tremendous progress towards answering this question. Yet, the confirmation of a true Earth-analogue still evades us. On top of this, if we are truly to understand the origins of life in the cosmos, we must also create a complete picture of planetary formation, evolution, and habitability.

However, each of these aspects necessitates a detailed knowledge of solar-type stars. This is because we study exoplanets indirectly by analysing their much more luminous host stars. For example, most planet confirmation relies on the Doppler wobble of the host star, induced by the planet. Moreover, we can learn about a planet's dynamical history from mapping its projected orbit as it transits its host star. Hence, stellar surface inhomogeneities can impact planetary interpretations, and can completely swamp the signals from rocky worlds.

My research, as a UKRI Future Leaders Fellow, aims to overcome these hurdles. For this, I study stellar surfaces from a two-pronged approach: with state-of-the-art 3D simulations and using transiting planets to empirically probe stellar surfaces.

Abstract:
Are we alone in the Universe? Since the confirmation of the first planets outside our solar system in the 1990s, we have made tremendous progress towards answering this question. Yet, the confirmation of a true Earth-analogue still evades us. On top of this, if we are truly to understand the origins of life in the cosmos, we must also create a complete picture of planetary formation, evolution, and habitability. However, each of these aspects necessitates a detailed knowledge of Sun-like stars. This is because we study exoplanets indirectly by analysing their much more luminous host stars. For example, most planet confirmation relies on the Doppler wobble of the host star, induced by the presence of the planet. Moreover, we can learn about a planet's dynamical history from mapping its projected orbit as it transits its host star. Hence, if there are inhomogeneities on the stellar surface, they can impact planetary interpretations and even completely swamp the signals from rocky worlds. In this talk, I will discuss how we confirm and characterise planets outside our solar system and how our knowledge of their host stars poses a fundamental hurdle we must overcome on the pathway to rocky, temperate worlds.


New Habitability GRP

We are delighted to announce that Habitability has been selected as one of Warwick's Global Research Priorities (GRPs), which play a crucial role in interdisciplinary research at the University. The GRPs respond to complex multi-faceted global problems that can only be tackled through collaborative research excellence. They unite academics from different disciplines to address some of humanity’s most urgent questions, and create fertile ground for new ideas to flourish and interdisciplinary research to grow - enabling us to improve the lives of people around the world.

The four key themes of the GRP are outlined here. There are a number of funding opportunities for relevant research projects - see here for further detail.


Habitability Seminar - Anders Sandberg

Seminar title: Inhabiting the universe: what are the limits for habitats across the future of the universe?

It was our pleasure to welcome Anders Sandberg from the Future of Humanity Institute, University of Oxford. Anders gave an exhilarating overview of a number of potential futures for life, both as we know it and otherwise. After considering the likeliness of finding alien life given our current observational and theoretical understanding, Anders moved on to consider a variety of avenues for life to flourish in the upcoming eras of the universe.


Older news