Skip to main content Skip to navigation

Events Calendar

Add your event to the calendar

Friday, October 16, 2020

Select tags to filter on
Thu, Oct 15 Today Sat, Oct 17 Jump to any date

Search calendar

Enter a search term into the box below to search for all events matching those terms.

Start typing a search term to generate results.

How do I use this calendar?

You can click on an event to display further information about it.

The toolbar above the calendar has buttons to view different events. Use the left and right arrow icons to view events in the past and future. The button inbetween returns you to today's view. The button to the right of this shows a mini-calendar to let you quickly jump to any date.

The dropdown box on the right allows you to see a different view of the calendar, such as an agenda or a termly view.

If this calendar has tags, you can use the labelled checkboxes at the top of the page to select just the tags you wish to view, and then click "Show selected". The calendar will be redisplayed with just the events related to these tags, making it easier to find what you're looking for.

 
-
Export as iCalendar
Life Sciences seminar by Prof George Bassel
via Microsoft Teams - Live Events

" Information processing and distributed computation in plant organs” 

Abstract: Plant growth and development is tightly coupled to the environment. These external inputs are processed within organs in order to optimize the timing of key decisions, such as the termination of dormancy or commencement of flowering. In order to better understand how collections of cells in plants process information, parallels and differences between these naturally evolved organisms and engineered computational systems are being examined. Specifically, whether the control principles of distributed computation also apply to information processing in plants. By viewing plant organs as integrated systems of interacting cells, we are mapping intercellular connectivity into networks to reveal the multicellular “circuitry” plants use to compute. Integrating these topological templates with mathematical models capturing the genetic programs that operate within individual cells enables the impact of each cell organization and communication rate on the timing of emergent decision-making to be examined. The development of further theory to identify the bounds of information processing in plants will enable their transformation into rational distributed computing devices.

Placeholder