Please read our student and staff community guidance on COVID-19
Skip to main content Skip to navigation

Breakthrough made on the next big step to building the world’s most powerful particle accelerator

  • Scientists including University of Warwick team observe muon ionization cooling for the first time
  • A major step towards a new type of particle accelerator
  • Muons are elementary particles produced by smashing a beam of protons into a target
  • University of Warwick scientists and postgraduates played significant roles in the data-taking phase of the experiment and online computing resources

The target used to generate the muons for the experiment. Credit: STFCUniversity of Warwick scientists have played a key role in a discovery that brings us closer to the construction of new types of high-power particle accelerators which would operate at particle energies higher than the Large Hadron Collider.

For the first time scientists have observed muon ionization cooling – a major step in being able to create the world’s most powerful particle accelerator. This new muon accelerator will give us a better understanding of the fundamental constituents of matter.

Since the 1930s, accelerators have been used to make ever more energetic proton, electron, and ion beams. These beams have been used in practically every scientific field, from colliding particles in the Large Hadron Collider to measuring the chemical structure of drugs, treating cancers and the manufacture of the ubiquitous silicon microchip.

Now, the international Muon Ionization Cooling Experiment (MICE) collaboration, which includes many UK scientists, has made a major step forward in the quest to create an accelerator for an entirely different sort of particle, a muon. A muon accelerator could replace the Large Hadron Collider (LHC), providing at least a ten-fold increase in energy for the creation of new particles.

Until now, the question has been whether you can channel enough muons into a small enough volume to be able to study physics in new, unexplored systems. This new research, published in Nature today, shows that it is possible. The results of the experiment, carried out using the MICE muon beam-line at the Science and Technology Facilities Council (STFC) ISIS Neutron and Muon Beam facility on the Harwell Campus in the UK, clearly show that ionization cooling works and can be used to channel muons into a tiny volume.

The University of Warwick MICE team, based in the Department of Physics, provided the operational lead and oversight during the data-taking phase of the experiment, and led the group providing, and maintaining, the online computing resources.

Dr Steven Boyd from the University of Warwick said: “The practical implementation of the ionisation cooling concept by the MICE experiment stands as one of the final proofs-of-concept that will permit the construction of a whole new class of particle accelerators: the muon colliders and the neutrino factories. These new machines, if constructed, will be able to explore fundamental particle physics at the energy frontier beyond the reach of current machines, such as the LHC.

“We would like to acknowledge the support of all international funding agencies, including STFC, and are extremely grateful to the ISIS neutron and muon source for hosting the MICE experiment. In particular, I would like to acknowledge the Warwick post-graduate students and post-doctoral fellows, who played significant roles in the data-taking and data analysis leading to this fantastic result.”

An infographic explaining the MICE experiment. Credit: STFC“The enthusiasm, dedication, and hard work of the international collaboration and the outstanding support of laboratory personnel at STFC and from institutes across the world have made this game-changing breakthrough possible,” commented Professor Ken Long from Imperial College London, spokesperson for the experiment.

Dr Chris Rogers, based at ISIS and the collaboration’s Physics Co-ordinator, explained: “MICE has demonstrated a completely new way of squeezing a particle beam into a smaller volume. This technique is necessary for making a successful muon collider, which could outperform even the LHC.”

Muons have many uses – they can be used to study the atomic structure of materials, they can be used as a catalyst for nuclear fusion and they can be used to see through really dense materials which X-rays can't get through. The research team hopes that this technique can help produce good quality muon beams for these applications as well.

Muons are produced by smashing a beam of protons into a target. The muons can then be separated off from the debris created at the target and directed through a series of magnetic lenses. Because of this rough-and-ready production mechanism, these muons form a diffuse cloud – so when it comes to colliding the muons, the chances of them hitting each other and producing interesting physical phenomena is really low.

To make the cloud less diffuse, a process called beam cooling is used. This involves getting the muons closer together and moving in the same direction. Magnetic lenses can get the muons closer together, or get them moving in the same direction, but not both at the same time.

A major obstacle to cooling a muon beam is that muons only live for two millionths of a second, and previous methods developed to cool beams take hours to achieve an effect. In the 1970s a new method called 'ionization cooling' had been suggested, and developed into theoretically operable schemes in the in the 1990s. The hurdle of testing this idea in practice remained formidable.

The MICE Collaboration developed the completely new method to tackle this unique challenge, cooling the muons by putting them through specially-designed energy-absorbing materials such as lithium hydride, a compound of lithium metal and hydrogen, or liquid hydrogen cooled to around minus 250 degrees Celsius and encased by incredibly thin aluminium windows. This was done while the beam was very tightly focussed by powerful superconducting magnetic lenses. The measurement is so delicate that it requires measuring the beam particle-by-particle using particle physics techniques rather than the usual accelerator diagnostics.

After cooling the beam, the muons can be accelerated by a normal particle accelerator in a precise direction, making it much more likely for the muons to collide. Alternatively, the cold muons can be slowed down so that their decay products can be studied.

  • “Demonstration of cooling by the Muon Ionization Cooling Experiment” was published in Nature on 5 February. DOI: 10.1038/s41586-020-1958-9

END

Notes to editors:

Images available to download:

An infographic explaining the MICE experiment (Credit: STFC): https://warwick.ac.uk/services/communications/medialibrary/images/february2020/mice_infographic_final.jpg

The target used to generate the muons for the experiment (Credit: STFC): https://warwick.ac.uk/services/communications/medialibrary/images/february2020/target-26.jpg

6 February 2020

For interviews or a copy of the paper contact:

Peter Thorley
Media Relations Manager (Warwick Medical School and Department of Physics)

Email: peter.thorley@warwick.ac.uk

Tel: +44 (0)24 761 50868

Mob: +44 (0) 7824 540863