Skip to main content Skip to navigation

Enhancing the resilience of rural and urban networks

Weisi research

The project

In this project researchers are working to improve the resilience of rural and urban networks by analysing human and natural critical ecosystems. Modern society is heavily dependent on critical infrastructure systems. Many of these systems are coupled human and natural ecosystems, and increasingly experience both natural and man-made stressors.

Despite their national importance, the complexity of these coupled systems means we do not fully understand how to invest and adapt them to different risks and uncertainties.

This 3-year project funded by the Alan Turing Institute-Lloyd’s Register Foundation Programme in Data-Centric Engineering aims to address the large uncertainties that arise due to chain reactions occurring in our interdependent critical ecosystems, with a focus on the rural-urban coupled water networks. This work will leverage on recent advances in data and network-science to develop a more holistic and adaptable approach to managing risk and building resilience, and this shall improve the safety of the society and its interdependent critical infrastructures.

We can learn from natural complex systems which have evolved under constant predation and environmental stress. In particular, we draw inspiration from natural ecosystems, where two recent discoveries are relevant.

First, it has been shown that these complex systems can grow in size and complexity whilst retaining resilience. Even without precise knowledge of the complex dynamics, one can still check the stability of a system from the network structure. This has the potential to achieve long-term resilient growth of complex systems.

Second, it was shown that ecosystems can dynamically rewire to minimise cascade failures. This mechanism can achieve dynamic resilience in the face of unknown risks.

Further analysis will focus on network robustness under different attack/failure and recovery scenarios. This naturally occurring distributed intelligence in adapting under future uncertainty may help us develop connected thinking and build both static and dynamic approaches to resilience.

Part of The Alan Turing Institute-Lloyd’s Register Foundation Programme for Data-Centric Engineering

Research interest

As our world becomes increasingly connected at different societal, infrastructural, and economic levels, we're keen to understand if we are resilient to new threats such as cyber-terrorism and climate change, and old threats such as war. Large, complex, and connected systems that span multiple dimensions and scales are difficult to understand and analyse.

At Warwick and the Alan Turing Institute, Dr Guo is working to understand how these large and non-linear complex networks can be better understood in terms of its stability, robustness, resilience, and efficiency.


Dr Weisi Guo, Associate Professor in Information and Networks,
University of Warwick



Julie McCann, Imperial College

Ian Guymer, University of Warwick

Alan Wilson, The Alan Turing Institute

Mirco Musolesi, UCL

Ricardo Silva, UCL

Richard Gibbens, University of Cambridge

James Geddes, The Alan Turing Institute