2023
Abstract. A non-destructive CVD diamond X-ray beam imaging monitor has been developed for synchrotron beamlines. The device can be permanently installed in the X-ray beam path and is capable of transmissively imaging the beam profile at 100~frames per second. The response of this transmissive detector at this imaging rate is compared to synchronously acquired images using a destructive fluorescent screen. It is shown that beam position, size, and intensity measurements can be obtained with minimal disturbance to the transmitted X-ray beam. This functionality is beneficial to synchrotron beamlines as it enables them to monitor the X-ray beam focal size and position in real-time, during user experiments. This is a key enabling technology that would enable live beam size feedback, keeping the beamline's focusing optics optimised at all times. Ground vibrations (10Hz-20Hz) can cause movement of focusing optics and beamline mirrors, which disturb the X-ray beam and reduce the ultimate quality of the sample-point beam. This instrument can detect this beam motion, enabling the source to be more easily determined and mitigations to be put in place.
2022
Abstract. This Thesis describes the development and experimental testing of a new type of single-crystal chemical vapour deposition (CVD) diamond diagnostic instrument for synchrotron X-ray radiation. This pixelated detector is capable of non-destructively imaging the X-ray beam, and can remain in the beam path for the duration of synchrotron experiments. The detector can measure the position, profile, and flux of an incident beam. It has applications in beam position and profile monitoring, enabling active beam feedback and stabilisation.
The instrument utilises a single-crystal CVD diamond plate as the detector material, with laser-written conductive graphitic tracks embedded within the bulk diamond used as electrodes. The resulting instrument is an all-carbon X-ray imaging detector. Within the instrument's transmissive aperture there is no surface metallization that could absorb X-rays, and no surface structures that could be damaged by exposure to synchrotron X-ray beams. The all-carbon design ensures that there is no danger of electrode materials introducing new absorption edges that may affect synchrotron experiments.
A novel modulation lock-in readout scheme enables each pixel of the detector to be read out simultaneously. X-rays passing through the detector generate charge carriers within the bulk diamond through photoionisation, and these charge carriers travel to the nearest readout electrode under the influence of the modulated electrical bias. The signals from individual pixels are acquired by applying different modulation frequencies to different `bias' electrodes, and measuring the resulting signal amplitude of those frequencies on perpendicular `readout' electrodes. The system is designed to provide 100 frames per second image acquisition.
This instrument overcomes many of the issues associated with current generation synchrotron diagnostic instruments, enabling real-time and non-destructive X-ray beam profile measurements to be obtained.
Abstract. The European XFEL can generate extremely intense, ultra-short X-ray pulses at MHz repetition rates. Single-crystal CVD diamond detectors have been used to transparently measure the photon beam position and pulse intensity. The diamond itself can withstand the power of the beam, but the surface electrodes can be damaged since a single pulse can already exceed the damage threshold of the electrode material. Presented in this work are pulse intensity and position measurements obtained at the European XFEL using a new type of all-carbon single-crystal diamond detector developed at Diamond Light Source. Instead of traditional surface metallisation, the detector uses laser-written graphitic electrodes buried within the bulk diamond. There is no metallisation in the XFEL X-ray beam path that could be damaged by the beam. The results obtained from a prototype detector are presented, capable of measuring the intensity and 1-dimensional X-ray beam position of individual XFEL pulses. These successful measurements demonstrate the feasibility of all-carbon diagnostic detectors for XFEL use.
2021
Abstract. A new type of transmissive pixel detector has been developed for synchrotron radiation diagnostics at Diamond Light Source. A thin single-crystal CVD diamond plate is used as the detector material, and a pulsed-laser technique has been used to write conductive graphitic electrodes inside the diamond plate. Instead of using traditional electrodes formed from a layer of surface metallisation, the graphitic electrodes are buried under the surface of the diamond and result in an all-carbon imaging detector. Within the instrument’s transmissive aperture there are no surface structures that could be damaged by exposure to radiation beams, and no surface metallization that could introduce unwanted absorption edges. The instrument has successfully been used to image the X-ray beam profile and measure the beam position to sub-micron accuracy at 100 FPS at Diamond Light Source. A novel modulation lock-in technique is used to read out all pixels simultaneously. Presented in this work are measurements of the detector’s beam position resolution and intensity resolution. Initial measurements of the instrument’s spread-function are also presented. Numerical simulations are used to identify potential improvements to the electrode geometry to improve the spatial resolution of similar future detectors. The instrument has applications in both synchrotron radiation instrumentation, where real-time monitoring of the beam profile is useful for beam diagnostics and fault-finding, and particle tracking at colliders, where the electrode geometries that buried graphitic tracks can provide increased the charge collection efficiency of the detector.
2020
Abstract. The first experimental results from a new transmissive diagnostic instrument for synchrotron X-ray beamlines are presented. The instrument utilizes a single-crystal chemical-vapour-deposition diamond plate as the detector material, with graphitic wires embedded within the bulk diamond acting as electrodes. The resulting instrument is an all-carbon transmissive X-ray imaging detector. Within the instrument's transmissive aperture there is no surface metallization that could absorb X-rays, and no surface structures that could be damaged by exposure to synchrotron X-ray beams. The graphitic electrodes are fabricated in-situ within the bulk diamond using a laser-writing technique. Two separate arrays of parallel graphitic wires are fabricated, running parallel to the diamond surface and perpendicular to each other, at two different depths within the diamond. One array of wires has a modulated bias voltage applied; the perpendicular array is a series of readout electrodes. X-rays passing through the detector generate charge carriers within the bulk diamond through photoionization, and these charge carriers travel to the nearest readout electrode under the influence of the modulated electrical bias. Each of the crossing points between perpendicular wires acts as an individual pixel. The simultaneous read-out of all pixels is achieved using a lock-in technique. The parallel wires within each array are separated by 50µm, determining the pixel pitch. Readout is obtained at 100Hz, and the resolution of the X-ray beam position measurement is 600nm for a 180µm size beam.
2019
Abstract. A new feedback system is being developed at Diamond Light Source, applying a modulation to the position of the electron beam to keep the synchrotron X-ray beam fixed at a beamline X-ray diagnostic. Beamline detectors operating in the 100 - 1000 Hz regime are becoming common, and the X-ray beam stability demanded by beamlines is thus of comparable bandwidths. In this paper we present a feedback system operating at these bandwidths, using a diagnostic instrument permanently installed in the X-ray beam path to measure the error in beam position close to the sample point, and fast air-cored magnets to apply a small modulation to the electron beam to compensate. Four magnets are used to generate electron beam bumps through an insertion device straight. This modulation of the beam away from the nominal orbit is small, less than 10 microns, but should be sufficient to compensate for the bulk of the X-ray motion observed. It is small enough that the impact on the machine will be negligible. This system aims to maintain X-ray beam stability to within 3 % of a beam size, at bandwidths of up to 500 Hz.
2018
Abstract. A single crystal CVD diamond detector with graphitic wire electrodes running beneath the diamond surface has been fabricated. This detector design is novel in that there is no surface metallisation present within the active region, and so the detector is a uniquely transmissive X-ray beam diagnostic instrument. This detector is designed to simultaneously measure the position, profile, and flux of an incident beam. It has applications in beam position and profile monitoring, and active beam feedback and stabilisation. To achieve this, a short-pulse laser, focused to micron-sizes using adaptive optics, can be used to graphitise arbitrary wire paths within bulk diamond. Presented in this paper is a transmissive X-ray pixel detector design with a 50-micrometre pixel pitch created using this technique. This pixel detector is produced by fabricating two separate arrays of parallel wires running under the surface of a diamond plate. The two arrays run perpendicular to each other, and parallel to the diamond surface. They are separated within the material by a depth of 100 microns. The parallel wires within each array are separated by 50-microns, and this is what determines the pixel pitch. Each of the crossing points between two wires from each array acts as a pixel. The signal from each pixel may be read out by measuring the signal current from each wire in one array whilst applying a bias voltage alternately to each wire in the other, perpendicular array. Alternatively, it is proposed to modulate the bias applied to each wire at a different frequency, from which the 2-dimensional beam profile may also be measured using a lock-in technique. This paper will provide an overview of the fabrication techniques for this first prototype detector, and provide a discussion of signal readout methods that will be used. An outline of the planned experimental tests is given.
2016
Abstract. We report on the use of single-crystal chemical vapour deposition (scCVD) diamond X-ray beam diagnostics at Diamond Light Source Ltd (DLS) for beamline commissioning and day-to-day beamline operation. It is demonstrated that such detectors can offer synchrotron beamlines a measurement of the X-ray beam position with resolutions of a few 10nm at kHz bandwidths. It is straightforward to extract extremely valuable spectral information of both beam motion and intensity, aiding beamlines in determining the source of vibrations or other beam instabilities. In this paper we discuss the motivation behind the use of single-crystal diamond detectors for monitoring monochromatic X-ray beams, and advantages over other diagnostic techniques are discussed. In order to absolutely quantify the performance of the diamond detectors in use at DLS an experiment has been conducted with three diamond X-ray beam position monitors installed on a beamline, longitudinally separated along the beam path by ~10 millimeters and intercepting the same incident X-ray beam. Measurements from each of the three diamond detectors were synchronously acquired at kHz bandwidths. Other, independent measurements were employed to corroborate the measurements obtained from the three X-ray beam position monitors. The uncorrelated position measurement noise recorded by the synchronous measurements and is shown to be less than 1% of beam size at this bandwidth. Longer integration times resulted in correspondingly less measurement noise.
2015
Abstract. Maintaining the stability of the X-ray beam relative to the sample point is of paramount importance for beamlines and users wanting to perform cutting-edge experiments. The ability to detect, and subsequently compensate for, variations in X-ray beam position with effective diagnostics has multiple benefits: a reduction in commissioning and start-up time, less ‘downtime’, and an improvement in the quality of acquired data. At Diamond Light Source a methodical evaluation of a selection of monochromatic X-ray Beam Position Monitors (XBPMs), using a range of position detection techniques, and from a range of suppliers, was carried out. The results of these experiments are presented, showing the measured RMS noise on the position measurement of each device for a given flux, energy, beam size, and bandwidth. A discussion of the benefits and drawbacks of each of the various devices and techniques is also included.
2014
Abstract. Principal component analysis is a powerful data analysis tool, capable of reducing large complex data sets containing many variables. Examination of the principal components set allows the user to spot underlying trends and patterns that might otherwise be masked in a very large volume of data, or hidden in noise. Diamond Light Source archives many gigabytes of machine data every day, far more than any one human could effectively search through for correlations. Presented in this paper are some of the results from running principal component analysis on years of archived data in order to find underlying correlations that may otherwise have gone unnoticed. The advantages and limitations of the technique are discussed.
Abstract. Diamond Light Source produces a low emittance 3 GeV electron beam which is now regularly operated at 8 pm rad vertical emittance. This corresponds to a vertical beamsize of just 13 μm in the dipole, which is at a high vertical beta location and routinely used for observing the synchrotron radiation using a pinhole camera. Deconvolution of the images from the pinhole camera to maximise resolution is limited by uncertainty regarding the precise shape of the pinhole, resulting in uncertainty on its computed point spread function. Recently a coded aperture has been installed which offers the potential to improve upon the traditional pinhole measurement by offering both higher resolution and increased flux seen through a larger total aperture, however, at the cost of significantly more complex analysis of the recorded images. A comparison of results obtained using the coded aperture and those achieved using the conventional pinhole is presented.
2013
Abstract. Tungsten blade X-ray Beam Position Monitors (XBPMs) have been used at Diamond Light Source since 2007, however a long-standing problem with these devices has been the growth of leakage current through the ceramic insulation within the XBPMs over time, often becoming greater than 10 % of the signal current after a few years of operation. The growth of these leakage currents has been found to be exacerbated by the application of a negative bias (-70 V) to the tungsten blades, a bias suggested for optimum position sensitivity. This bias is applied in order to accelerate free electrons away from the surface of the blades and to prevent cross-talk, however, we have found that the operation of the XBPMs without bias has negligible impact on our measurements. Removal of the bias has been found to prevent the growth of leakage currents over time, and can also significantly reduce the cost of our signal acquisition by removing the need for a low-current amplifier with a bias supply
2012
Abstract. In this paper we demonstrate significant improvements to the stability of the monochromatic X-ray beam intensity on several beamlines at Diamond, using a modulation of the pitch axis of the DCM with a piezoelectric actuator. The modulation is detected on an intensity diagnostic (e.g. an ion chamber) using a software lock-in technique. The detected amplitude and phase are used in a feedback to keep the DCM at the peak of the rocking curve, or any arbitrary position ‘off-peak’ which might be desired to detune the DCM and reject unwanted harmonics. A major advantage of this software based system is the great flexibility offered, using standard, readily available instrumentation. Measurements of the short and longterm performance of the feedback on several beamlines are presented, and the limitations of such a feedback are discussed.
Abstract. Photoemission based X-ray Beam Position Monitors (XBPMs) are widely used at 3rd generation light sources to both monitor and stabilise the photon beam to sub-micron precision. Traditionally, finding the geometric scale factors requires either systematic stepper motor movements of the XBPM or well controlled electron beam displacements to measure the response of the XBPM. For each Insertion Device gap it is required to repeat this in order to build up a complete set of scale factors covering all possible operating conditions. Elliptically Polarising Undulators further complicate matters by having multiple operating modes which would require multi dimensional lookup tables. Presented in this paper is a method for retrieving the geometric scale factors of an XBPM in real time by making use of the intrinsic small random movements of the electron beam and finding the correlation in synchronous measurements from
Electron BPMs and XBPMs at kHz sample rates.
2011
Abstract. This paper presents the design andfi rst results of a new XBPM developed at Diamond that images the pho-ton backscatter from a Front End absorber to measure the beam centre of mass. This is of particular interest for monitoring the emission fro m elliptically polarising undu-lators where the profi le of the beam varies strongly with change of beam polarisation. Traditional four-blade Front End XBPMs struggle to resolve a beam centre of mass for EPUs because of this. We have developed an XBPM that observes the backscattered photons from a copper aperture through a pinhole. This solution is capable of operating with the full white beam, and has been designed tofi tinto the same physical space as the standard front end XBPMs in use at Diamond. This offers the potential to easily re-place traditional XBPMs where benefi cial and required.