September 2007-September 2012: Operation Phase III.
In September 2007, EPSRC funded the XMaS project for a further five years with the award of £3,761,782 to the Universities of Warwick and Liverpool. A key objective of this phase of the grant was to build links with DIAMOND, the UK light source.
Phase III has been marked by a number of changes in personnel:
Danny Mannix left late 2007 for a scientist position at the CNRS next door to the ESRF/ILL site. He was replaced by Peter Normile who left XMaS a couple of years later for a permanent position at the University of Castilla-La Mancha (Spain).
An additional four year PDRA post was created with 50% of the funding coming from DIAMOND in order to train a beamline scientist at XMaS and then transfer “know how” to DIAMOND. Oier Bikondoa occupied this post for a few months before taking over the scientist position vacated by Laurence Bouchenoire. She replaced David Paul who retired in May 2009 and became the Beamline Coordinator.
Gemma Newby joined the team as the new joint PDRA. She spent the first two years of her post-doc at XMaS before moving onto DIAMOND, whilst maintaining a close relationship with the CRG.
The last new face during that period was the arrival of Didier Wermeille in January 2011 as a beamline scientist replacing Peter Normile. Malcolm Cooper also officially retired from Warwick in 2010 and was replaced by his colleague Tom Hase. However, Malcolm still plays a major management role in the project.
Sample environments were also developed for the application of electric fields in collaboration with the National Physical Laboratory (NPL) in the UK and the development of a liquid nitrogen cooled monochromator to replace the water–cooled version was initiated. During this phase of operation there has been a significant increase in the amount of research projects on surfaces with studies of electrochemistry and electrochemical degradation of cultural artifacts and studies of soft matter by SAXS/WAXS and grazing incidence diffraction.
Key Instrumentation Delivered:
- Electric field capabilities between 2-300 K in a 4 Tesla magnetic field.
- Enhanced performance at low energies, down to 2.4 keV.
- Provision of some off-line electrical measurements (e.g. P-E loops).