Coverage-Driven Dissociation of Azobenzene on Cu(111): A Route Towards Defined Surface Functionalization
Coverage-Driven Dissociation of Azobenzene on Cu(111): A Route Towards Defined Surface Functionalization
M. Willenbockel, R. J. Maurer, C. Bronner, M. Schulze, B. Stadtmüller, S. Soubatch, P. Tegeder, K. Reuter, F. S. Tautz, Chem. Commun., 51, 15324-15327 (2015)
Using X-ray Photoelectron Spectroscopy, X-ray Standing Waves and Density Functional Theory we discover a novel route towards surface functionalization by coverage-driven dissociation of Azobenzene on Cu(111)
We investigate the surface-catalyzed dissociation of the archetypal molecular switch azobenzene on the Cu(111) surface. Based on x-ray photoelectron spectroscopy, normal incidence x-ray standing waves and density functional theory calculations a detailed picture of the coverage-induced formation of phenyl nitrene from azobenzene is presented. Furthermore, a comparison to the azobenzene/Ag(111) interface provides insight into the driving force behind the dissociation on Cu(111). The quantitative decay of azobenzene paves the way for the creation of a defect free, covalently bonded monolayer. Our work suggests a route of surface functionalization via suitable azobenzene derivatives and the on surface synthesis concept, allowing for the creation of complex immobilized molecular systems.
Go To Journal