Skip to main content Skip to navigation



32. Stephen E. Brown, Ioanna Mantaloufa, Ryan T. Andrews, Thomas J. Barnes, Martin R. Lees, Frank De Proft, Ana V. Cunha* and Sebastian D. Pike*, Chemical Science, 2023, 14, 675 - 683, Photoactivation of titanium-oxo cluster [Ti6O6(OiPr)6(O2CtBu)6]: mechanism, photoactivated structures, and onward reactivity with O2 to a peroxide complex

31. Thomas J. Barnes, Jack Payne, Sebastian D. Pike, Chem. Commun., 2023, 59, 59 - 62, Synthesis of a nanoscale Cu(II)31-oxo-carboxylate cluster, and effect of Cu-oxo cluster size on visible-light absorption


30. Virgil Andrei, Geani M. Ucoski, Chanon Pornrungroj, Chawit Uswachoke, Qian Wang, Demetra S. Achilleos, Hatice Kasap, Katarzyna P. Sokol, Robert A. Jagt, Haijiao Lu, Takashi Lawson, Andreas Wagner, Sebastian D. Pike, Dominic S. Wright, Robert L. Z. Hoye, Judith L. MacManus-Driscoll, Hannah J. Joyce, Richard H. Friend; Erwin Reisner, Nature, 2022, 608, 518-522, Floating perovskite-BiVO4 devices for scalable solar fuel production.


29. Wei-Hui Fang*, Rosa Muller, Rajesh B. Jethwa, Victor Riesgo-Gonzalez, Ning Li, Sebastian D. Pike, Andrew D. Bond, He-Kuan Luo, Cheng Zhang and Dominic S. Wright*, Dalton Trans., 2021, 50, 17202 , Titanium compounds containing naturally occurring dye molecules.

Faraday Discuss., 2021, 231, 127, Fundamental studies and design of MOFs: general discussion,

Faraday Discuss., 2021, 231, 305, Applications and developments (part 2): general discussion,


28. Rebecca J Murray-Watson, Sebastian D. Pike*, Organometallics, 2020, 39, 20, 3759–3767, Exploring the Synthesis and Coordination Chemistry of Pentafluorophenylcopper: Organocopper Polyanions and Coordination Networks.


      26. Sandeep K. Sehmi, Claudio Lourenco, Khaled Alkhuder, Sebastian D. Pike, Sacha Noimark, Charlotte K. Williams, Milo S. P. Shaffer, Ivan P. Parkin*, Alexander J. MacRobert*, Elaine Allan*, ACS Infectious Diseases, 2020, 6, 5, 939, . Antibacterial Surfaces with Activity against Antimicrobial Resistant Bacterial Pathogens and Endospores"

      25. Haijiao Lu, Dominic S. Wright*, Sebastian D. Pike*, Chem. Commun., 2020, 56, 854, "The use of mixed-metal single source precursors for the synthesis of complex metal oxides".


      24. Tobias , Floriana Tuna, Sebastian D. Pike*, Chemical Science, 2019, 10, 6886, "Photo-redox reactivity of titanium-oxo clusters: mechanistic insight into a two-electron intramolecular process, and structural characterisation of mixed-valent Ti(III)/Ti(IV) products"

      23. Haijiao Lu, Rajesh B. Jethwa, Kellie J. Jenkinson, Andrew E. H. Wheatley, Hongxun Hao, Dominic S. Wright*, Sebastian D. Pike*, Dalton Transactions., 2019, 48, 4555, "A simple one-step synthetic route to access a range of metal-doped polyoxovanadate clusters"


      22. Haijiao Lu, Virgil Andrei, Kellie J. Jenkinson, Anna Regoutz, Ning Li, Charles E. Creissen, Andrew E. H. Wheatley, Hongxun Hao, Erwin Reisner*, Dominic S. Wright*, Sebastian D. Pike*, Advanced Materials., 2018, 1804033, "Single‐Source Bismuth (Transition Metal) Polyoxovanadate Precursors for the Scalable Synthesis of Doped BiVO4 Photoanodes"

      21. Jennifer A. Garden*, Sebastian D. Pike*, Dalton Trans., 2018, 47, 3638, "Hydrolysis of organometallic and metal–amide precursors: synthesis routes to oxo-bridged heterometallic complexes, metal-oxo clusters and metal oxide nanoparticles"

      20. Layered zinc hydroxide monolayers by hydrolysis of organozincs”


      19. Selected as HOT article for 2017.

      18. Sebastian D. Pike*, Mark. R. Crimmin*, Adrian B. Chaplin*, Chem. Commun. 2017, 53, 3615 “Organometallic Chemistry using Partially Fluorinated Benzenes.”

      17. Sebastian D. Pike, Edward R. White, Anna Regoutz, Nicholas Sammy, David J. Payne, Charlotte K. Williams*, and Milo S. P. Shaffer*, ACS Nano. 2017, 11, 22714 “Reversible Redox Cycling of Well-Defined, Ultrasmall Cu/Cu2O Nanoparticles.”


      16. S. D. Pike, E. R. White, M. S. P. Shaffer*, C. K. Williams*, Nature Comm. 2016, 7, 13008: “Simple Phosphinate Ligands Access Zinc Clusters Identified in the Synthesis of Zinc Oxide Nanoparticles.”

      15. S. K. Sehmi, S. Noimark, S. D. Pike, J. C. Bear, W. J. Peveler, C. K. Williams, M. S. P. Shaffer, E. Allan, I. P. Parkin, A. J. Macrobert*, ACS Omega, 2016, 1, 334: “Enhancing the Antibacterial Activity of Light-Activated Surfaces Containing Crystal Violet and ZnO Nanoparticles: Investigation of Nanoparticle Size, Capping Ligand, and Dopants.”

      14. A. Kumar, N. A. Beattie, S. D. Pike, S. A. Macgregor,* A. S. Weller*, Angew. Chem. Int. Ed., 2016, 55, 6651: “The Simplest Amino-borane H2B=NH2 Trapped on a Rhodium Dimer.”


      13. E. R. White, J. Weiner, A. Garcia-Trenco, S. D. Pike, C. K. Williams, M. S. P. Shaffer, Microsc. Microanal., 2015, 21, S3, 1667: “Semi-Automated DigitalMicrograph Routine for Real-Time Phase Identification.”

      12. S. D. Pike* and A. S. Weller*, Phil. Trans. R. Soc. A, 2015, 373, 20140187: “Organometallic Synthesis, Reactivity and Catalysis in the Solid–State Using Well–Defined Single Site Species.”

      11. G. M. Adams, F. M. Chadwick, S. D. Pike, A. S. Weller*, Dalton Trans., 2015, 44, 6340: “A CH2Cl2 complex of a [Rh(pincer)]+ cation.”

      10. S. D. Pike*, I. Pernik, R. Theron, J. S. McIndoe,* A. S. Weller*, J. Organomet. Chem., 2015, 784, 75: “Relative Binding Affinities of Fluorobenzene Ligands in Cationic Rhodium Bisphosphine η6 Fluorobenzene Complexes Probed Using Collision-Induced Dissociation.”

      9. P. Ren, S. D. Pike, I. Pernik, A. S. Weller* and M. C. Willis*, Organometallics, 2015, 34, 1137: “Rh-POP Pincer Xantphos Complexes for C-S and C-H Activation. Implications for Carbothiolation Catalysis”

      8. S. D. Pike, F. M. Chadwick, N. H. Rees, M. P. Scott, A. S. Weller*, T. Kramer, S. M. Macgregor*, J. Am. Chem. Soc., 2015, 137, 820: “Solid-State Synthesis and Characterization of σ-Alkane Complexes.”

      7. S. D. Pike, T. Kramer, N. H. Rees, S. M. Macgregor*, A. S. Weller*, Organometallics, 2015, 34, 1487: “Stoichiometric and Catalytic Solid-Gas Reactivity of Rhodium Bis-Phosphine Complexes.” Front Cover Image: Vol 34, Issue 8, April 27 2015.

      6. A. Prades, M. Fernandez, S. D. Pike, M. C. Willis*, A. S. Weller*, Angew. Chem. Int. Ed., 2015, 54, 8520: “Well-Defined and Robust Rhodium Catalysts for the Hydroacylation of Terminal and Internal Alkenes.”


      5. T. N. Hooper, M. A. Huertos, S. D. Pike, T. Jurca, A. S. Weller*, I. Manners*, Inorg. Chem., 2014, 53, 3716: “Effect of the Phosphine Steric and Electronic Profile on the Rh-Promoted Dehydrocoupling of Phosphine-Boranes.”


      4. S. D. Pike, A. S. Weller*, Dalton Trans., 2013, 42, 12832: “C–Cl Activation of the Weakly Coordinating Anion [B(3,5–C6H3Cl2)4]– at a Rh(I) Centre in Solution and the Solid–State.”

      3. H. C. Johnson, C. L. McMullin, S. D. Pike, S. A. Macgregor*, A. S. Weller*, Angew. Chem. Int. Ed., 2013, 52, 9776: “Dehydrogenative B-B Homocoupling of an Amine-Borane: A New Mode of Reactivity.”


      2. S. D. Pike, A. L. Thompson, A. s. G. Algarra, D. C. Apperley, S. A. Macgregor*, A. S. Weller*, Science, 2012, 337, 1648-1651: “Synthesis and Characterization of a Rhodium(I) σ-Alkane Complex in the Solid State.” Highlighted in Diamond Light Source Annual Review 2012/13.


      1. S. D. Pike, R. J. Pawley, A. B. Chaplin, A. L. Thompson, J. A. Hooper, M. C. Willis*, A. S. Weller*, Eur. J. Inorg. Chem., 2011, 36, 5558: “Exploring (Ph2PCH2CH2)2E Ligand Space (E = O, S, PPh) in Rh(I) Alkene Complexes as Potential Hydroacylation Catalysts.”

      Mini Overviews

      32. Photoactivation of titanium-oxo cluster [Ti6O6(OiPr)6(O2CtBu)6]: mechanism, photoactivated structures, and onward reactivity with O2 to a peroxide complex.

      Earth-abundant titanium-oxo clusters undergo a photoreaction under UV light resulting in a deeply coloured mixed-valence cluster. The study shows that this photoreaction does not occur via free radicals, instead using cooperativity between the multiple titanium centres in the cluster to promote two-electron bond breaking/making steps, paving a way to using these systems for controlled and selective photocatalysis. Reaction of the photoreduced cluster with O2 results in the formation of a peroxide complex.

      31. Synthesis of a nanoscale Cu(II)31-oxo-carboxylate cluster, and effect of Cu–oxo cluster size on visible-light absorption

      In this report the largest Cu-oxo cluster with exclusively O-donor ligands is reported, with a maximum diameter of 1.5 nm and a condensed Cu+O core. This yellow/geen cluster absorbs more visible light than smaller Cu-oxo clusters or Cu complexes, indicating that it begins to behave more like a CuO nanostructure.

      28. Exploring the Synthesis and Coordination Chemistry of PentafluorophenylCopper: Organocopper Polyanions and Coordination Networks

      Organocopper reagents are useful in inorganic and materials synthesis, and are often generated in-situ for organic transformations. In this paper we investigate routes to make pentafluorophenylcopper with a strong electron withdrawing organo-group. Our in-situ NMR spectroscopic study shows the importance of solvent choice in the synthesis and we capture the crystal structure of [CuC6F5]4(dioxane) over 50 years after its initial discovery. By using THF solvent in the synthesis a range of unusual magnesium cuprates can be formed including a remarkable organocopper polymer!